Sparsity Problem Involving Rational Basis Functions

P. Kovács
{"title":"Sparsity Problem Involving Rational Basis Functions","authors":"P. Kovács","doi":"10.1109/SSP.2018.8450725","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of sparse signal modeling by means of rational functions. Our dictionary is composed by a finite collection of elementary rational functions. In order to represent the signal with minimal error, we select an optimal number of basis from this set. The mutual coherence is a fundamental attribute of the dictionary. We analyze this quantity and describe its relation to the free parameters, i.e., the inverse poles, of rational functions. Then, we demonstrate the efficiency of sparse rational representations by compressing real electrocardiograms (ECG) including comparisons with other methods.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider the problem of sparse signal modeling by means of rational functions. Our dictionary is composed by a finite collection of elementary rational functions. In order to represent the signal with minimal error, we select an optimal number of basis from this set. The mutual coherence is a fundamental attribute of the dictionary. We analyze this quantity and describe its relation to the free parameters, i.e., the inverse poles, of rational functions. Then, we demonstrate the efficiency of sparse rational representations by compressing real electrocardiograms (ECG) including comparisons with other methods.
涉及有理基函数的稀疏性问题
本文研究了用有理函数对稀疏信号进行建模的问题。我们的字典是由有限的初等有理函数集合组成的。为了以最小的误差表示信号,我们从这个集合中选择一个最优的基数。相互连贯是词典的一个基本属性。我们分析了这个量,并描述了它与有理函数的自由参数,即逆极点的关系。然后,我们通过压缩真实心电图(ECG)来证明稀疏有理表示的有效性,包括与其他方法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信