Deep Adversarial Image Synthesis for Nuclei Segmentation of Histopathology Image

Jijun Cheng, Zimin Wang, Zhenbing Liu, Zhengyun Feng, Huadeng Wang, Xipeng Pan
{"title":"Deep Adversarial Image Synthesis for Nuclei Segmentation of Histopathology Image","authors":"Jijun Cheng, Zimin Wang, Zhenbing Liu, Zhengyun Feng, Huadeng Wang, Xipeng Pan","doi":"10.1109/ACCC54619.2021.00017","DOIUrl":null,"url":null,"abstract":"Nuclei segmentation is a fundamental upstream task of digital pathology image analysis. Existing nuclei segmentation methods usually require pixel-level labeled images from experienced pathologists. In this paper, we proposed an innovative data augmentation workflow for histopathology images: a) generates a set of initial central points randomly with existing human-annotated histopathology image datasets; b) generates nuclei segmentation masks based on the generated centroid points of step a); c) generates Haematoxylin and Eosin (H&E)-stained histopathology images corresponding to the generated nuclei masks. In addition, we proposed a deep attention feature fusion generative adversarial network (DAFF -GAN) to improve the image quality and the photorealism of the generated image. We conducted extensive experiments on several existing nuclei segmentation methods, comparing using raw data with the augmented data by our strategy. Extensive experiments proved the effectiveness of our proposed strategy.","PeriodicalId":215546,"journal":{"name":"2021 2nd Asia Conference on Computers and Communications (ACCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Asia Conference on Computers and Communications (ACCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCC54619.2021.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Nuclei segmentation is a fundamental upstream task of digital pathology image analysis. Existing nuclei segmentation methods usually require pixel-level labeled images from experienced pathologists. In this paper, we proposed an innovative data augmentation workflow for histopathology images: a) generates a set of initial central points randomly with existing human-annotated histopathology image datasets; b) generates nuclei segmentation masks based on the generated centroid points of step a); c) generates Haematoxylin and Eosin (H&E)-stained histopathology images corresponding to the generated nuclei masks. In addition, we proposed a deep attention feature fusion generative adversarial network (DAFF -GAN) to improve the image quality and the photorealism of the generated image. We conducted extensive experiments on several existing nuclei segmentation methods, comparing using raw data with the augmented data by our strategy. Extensive experiments proved the effectiveness of our proposed strategy.
用于组织病理图像核分割的深度对抗图像合成
核分割是数字病理图像分析的基本上游任务。现有的核分割方法通常需要来自经验丰富的病理学家的像素级标记图像。在本文中,我们提出了一种创新的组织病理学图像数据增强工作流程:a)使用现有的人类注释的组织病理学图像数据集随机生成一组初始中心点;B)根据步骤a)生成的质心点生成核分割掩模;c)生成与生成的核掩膜相对应的血红素和伊红(H&E)染色的组织病理学图像。此外,我们提出了一种深度关注特征融合生成对抗网络(DAFF -GAN)来提高图像质量和生成图像的真实感。我们对几种现有的核分割方法进行了广泛的实验,比较了我们的策略使用原始数据和增强数据。大量的实验证明了我们提出的策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信