Use of convolutional neural networks for autonomous driving maneuver

Oscar González-Miranda, J. M. Ibarra-Zannatha
{"title":"Use of convolutional neural networks for autonomous driving maneuver","authors":"Oscar González-Miranda, J. M. Ibarra-Zannatha","doi":"10.1109/comrob53312.2021.9628491","DOIUrl":null,"url":null,"abstract":"In this work, we use a convolutional neural network (CNN) to process the lidar data of an autonomous vehicle and so get the steering angle to carry out the obstacle evasion and parking maneuvers. To introduce the lidar data and other measurements in a CNN, we map the 400 polar vectors (ρi, ϕi) in a 20 × 20 normalized matrix; which the position of each element correspond to an angle ϕi and the elements are ρi/ρmax. We probe the method in simulator developed by the Freie Universität Berlin [1], getting a similar performance as a finite state machine, used as an expert driver in the training.","PeriodicalId":191869,"journal":{"name":"2021 XXIII Robotics Mexican Congress (ComRob)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXIII Robotics Mexican Congress (ComRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comrob53312.2021.9628491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we use a convolutional neural network (CNN) to process the lidar data of an autonomous vehicle and so get the steering angle to carry out the obstacle evasion and parking maneuvers. To introduce the lidar data and other measurements in a CNN, we map the 400 polar vectors (ρi, ϕi) in a 20 × 20 normalized matrix; which the position of each element correspond to an angle ϕi and the elements are ρi/ρmax. We probe the method in simulator developed by the Freie Universität Berlin [1], getting a similar performance as a finite state machine, used as an expert driver in the training.
卷积神经网络在自动驾驶机动中的应用
在这项工作中,我们使用卷积神经网络(CNN)来处理自动驾驶汽车的激光雷达数据,从而获得转向角度来进行避障和停车操作。为了在CNN中引入激光雷达数据和其他测量数据,我们将400个极性向量(ρi, ϕi)映射到一个20 × 20的归一化矩阵中;其中每个元素的位置对应于一个角ϕi,元素为ρi/ρmax。我们在Freie Universität Berlin[1]开发的模拟器中探索了该方法,获得了与有限状态机相似的性能,用作训练中的专家驾驶员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信