Who wrote this paper? Learning for authorship de-identification using stylometric featuress

Jose L. Hurtado, Napat Taweewitchakreeya, Xingquan Zhu
{"title":"Who wrote this paper? Learning for authorship de-identification using stylometric featuress","authors":"Jose L. Hurtado, Napat Taweewitchakreeya, Xingquan Zhu","doi":"10.1109/IRI.2014.7051981","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to combine stylometric features and neural networks for authorship de-identification. Our research mainly focuses on scientific publications, because scholarly journals are publicly available with plenty of labeled data to learn an author's style or traits. The main challenge of authorship de-identification is to identify features which can properly capture an author's writing style. In the proposed design, we choose a combination of stylometric features, including lexical, syntactic, structural and content-specific features, to represent each author's style and use them to build classification models. We manually collect publications from computer science and biomedicine domains and validate our designs by using a number of classification methods. Our experiments show that among four well-known classifiers, Multilayer Perceptron (MLP) classifiers achieve the best performance for authorship de-identification.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose to combine stylometric features and neural networks for authorship de-identification. Our research mainly focuses on scientific publications, because scholarly journals are publicly available with plenty of labeled data to learn an author's style or traits. The main challenge of authorship de-identification is to identify features which can properly capture an author's writing style. In the proposed design, we choose a combination of stylometric features, including lexical, syntactic, structural and content-specific features, to represent each author's style and use them to build classification models. We manually collect publications from computer science and biomedicine domains and validate our designs by using a number of classification methods. Our experiments show that among four well-known classifiers, Multilayer Perceptron (MLP) classifiers achieve the best performance for authorship de-identification.
这篇论文是谁写的?使用文体学特征学习作者身份去识别
在本文中,我们建议结合文体特征和神经网络来实现作者身份的去识别。我们的研究主要集中在科学出版物上,因为学术期刊是公开的,有大量的标签数据可以了解作者的风格或特点。作者身份去识别的主要挑战是识别能够正确捕捉作者写作风格的特征。在建议的设计中,我们选择了一个风格特征的组合,包括词汇、句法、结构和特定于内容的特征,来表示每个作者的风格,并使用它们来构建分类模型。我们手动收集来自计算机科学和生物医学领域的出版物,并通过使用多种分类方法验证我们的设计。我们的实验表明,在四种知名分类器中,多层感知器(MLP)分类器在作者身份去识别方面的性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信