A fast order-recursive algorithm for Toeplitz submatrix systems with applications to estimation of ARX systems

J. Pan, W. Levine
{"title":"A fast order-recursive algorithm for Toeplitz submatrix systems with applications to estimation of ARX systems","authors":"J. Pan, W. Levine","doi":"10.1109/CDC.1990.203307","DOIUrl":null,"url":null,"abstract":"The Levinson-type algorithms have not been applied to the linear minimum mean square error (LMMSE) estimation of parameters of an autoregressive system with exogenous inputs (ARX system) because the Yule-Walker equation in such a case is not a block-Toeplitz system, but is composed of block-Toeplitz submatrices. A new algorithm called the order-recursive algorithm (ORA) is developed to solve such systems, and it is applied to other LMMSE estimation problems of ARX systems. The resulting algorithm operates efficiently and recursively in the order of either the lagged output part or the exogenous input part. Meanwhile, it generates a set of LMMSE ARX models of different order as by-products. As a result, the ORA can be useful in many fields, including linear filtering of ARX and ARMA (autoregressive moving average) processes, system identification, model reduction, and adaptive control.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Levinson-type algorithms have not been applied to the linear minimum mean square error (LMMSE) estimation of parameters of an autoregressive system with exogenous inputs (ARX system) because the Yule-Walker equation in such a case is not a block-Toeplitz system, but is composed of block-Toeplitz submatrices. A new algorithm called the order-recursive algorithm (ORA) is developed to solve such systems, and it is applied to other LMMSE estimation problems of ARX systems. The resulting algorithm operates efficiently and recursively in the order of either the lagged output part or the exogenous input part. Meanwhile, it generates a set of LMMSE ARX models of different order as by-products. As a result, the ORA can be useful in many fields, including linear filtering of ARX and ARMA (autoregressive moving average) processes, system identification, model reduction, and adaptive control.<>
Toeplitz子矩阵系统的快速阶递归算法及其在ARX系统估计中的应用
由于Yule-Walker方程不是块- toeplitz系统,而是由块- toeplitz子矩阵组成,因此levinson型算法尚未应用于具有外源输入的自回归系统(ARX系统)参数的线性最小均方误差(LMMSE)估计。为了解决这类问题,提出了一种新的有序递归算法(ORA),并将其应用于ARX系统的其他LMMSE估计问题。所得到的算法按照滞后输出部分或外生输入部分的顺序高效递归地运行。同时,生成一组不同阶次的LMMSE ARX模型作为副产物。因此,ORA可用于许多领域,包括ARX和ARMA(自回归移动平均)过程的线性滤波、系统识别、模型简化和自适应控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信