Model-based diagnosis of chaotic vibration signals

I. Wattar, W. Hafez, Z. Gao
{"title":"Model-based diagnosis of chaotic vibration signals","authors":"I. Wattar, W. Hafez, Z. Gao","doi":"10.1109/IECON.1999.819378","DOIUrl":null,"url":null,"abstract":"This paper presents a model-based approach to online monitoring and fault diagnosis of rotating machinery. Fault (e.g., rub, imbalance) modes of rotating machines are classified using nonlinear dynamic models with quasi-periodic and chaotic behavior. The paper identifies a class of fault scenario under which the well-accepted nonlinear state filters (e.g., EKF) cannot be used to monitor or diagnose the machinery. An effective on-line model-based monitoring and diagnosis algorithm is proposed. The algorithm is based on computationally efficient algorithms for signal processing and parameter identification.","PeriodicalId":378710,"journal":{"name":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON'99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1999.819378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a model-based approach to online monitoring and fault diagnosis of rotating machinery. Fault (e.g., rub, imbalance) modes of rotating machines are classified using nonlinear dynamic models with quasi-periodic and chaotic behavior. The paper identifies a class of fault scenario under which the well-accepted nonlinear state filters (e.g., EKF) cannot be used to monitor or diagnose the machinery. An effective on-line model-based monitoring and diagnosis algorithm is proposed. The algorithm is based on computationally efficient algorithms for signal processing and parameter identification.
混沌振动信号的模型诊断
提出了一种基于模型的旋转机械在线监测与故障诊断方法。采用具有准周期和混沌行为的非线性动力学模型对旋转机械的故障(如摩擦、不平衡)模式进行分类。本文确定了一类故障场景,在这种情况下,普遍接受的非线性状态滤波器(如EKF)不能用于监测或诊断机械。提出了一种有效的基于模型的在线监测与诊断算法。该算法基于计算效率高的信号处理和参数识别算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信