Body Fat Prediction using Various Regression Techniques

Nikhil Mahesh, P. Pati, K. Deepa, Suresh Yanan
{"title":"Body Fat Prediction using Various Regression Techniques","authors":"Nikhil Mahesh, P. Pati, K. Deepa, Suresh Yanan","doi":"10.1109/ACCAI58221.2023.10200647","DOIUrl":null,"url":null,"abstract":"Predicting body fat percentage is essential for addressing the obesity problem. This paper compares the performance of several machine learning models based on Regression, to predict the body fat percentage. Using a dataset of 252 participants with information on age, weight, height, and fat percentage, the models were assessed based on multiple performance criteria, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Squared Error(MSE). The results demonstrates that Random Forest Regressor surpass other models with a lower RMSE of 0.276. These findings suggest that machine learning models can be a valuable tool for precise BFP, the use of machine learning provides a faster and more precise method for predicting body fat percentage. Overall, the study’s results suggest that machine learning models can be valuable tool for accurate body fat percentage prediction.","PeriodicalId":382104,"journal":{"name":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACCAI58221.2023.10200647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Predicting body fat percentage is essential for addressing the obesity problem. This paper compares the performance of several machine learning models based on Regression, to predict the body fat percentage. Using a dataset of 252 participants with information on age, weight, height, and fat percentage, the models were assessed based on multiple performance criteria, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Squared Error(MSE). The results demonstrates that Random Forest Regressor surpass other models with a lower RMSE of 0.276. These findings suggest that machine learning models can be a valuable tool for precise BFP, the use of machine learning provides a faster and more precise method for predicting body fat percentage. Overall, the study’s results suggest that machine learning models can be valuable tool for accurate body fat percentage prediction.
使用各种回归技术预测体脂
预测体脂百分比对于解决肥胖问题至关重要。本文比较了几种基于回归的机器学习模型的性能,以预测体脂率。使用包含年龄、体重、身高和脂肪百分比信息的252名参与者的数据集,基于多种性能标准对模型进行评估,包括均方根误差(RMSE)、平均绝对误差(MAE)和均方误差(MSE)。结果表明,随机森林回归模型优于其他模型,RMSE较低,为0.276。这些发现表明,机器学习模型可以成为精确BFP的有价值的工具,机器学习的使用为预测体脂百分比提供了更快、更精确的方法。总的来说,研究结果表明,机器学习模型可以成为准确预测体脂百分比的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信