Modification of DBSCAN and application to range/Doppler/DoA measurements for pedestrian recognition with an automotive radar system

T. Wagner, R. Feger, A. Stelzer
{"title":"Modification of DBSCAN and application to range/Doppler/DoA measurements for pedestrian recognition with an automotive radar system","authors":"T. Wagner, R. Feger, A. Stelzer","doi":"10.1109/EURAD.2015.7346289","DOIUrl":null,"url":null,"abstract":"We present in this paper modifications of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm in order to detect pedestrians with a conventional automotive 77-GHz frequency modulated radar system. These modification include dimension scaling as preprocessing and a generalization of the ε-neighborhood notation by introducing a size parameter to constitute the new Ellipsoid DBSCAN (EDBSCAN) algorithm. With these modifications we could successfully cluster real-world measurement data in order to get reasonable cluster representations of pedestrians in a cluttered environment.","PeriodicalId":376019,"journal":{"name":"2015 European Radar Conference (EuRAD)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURAD.2015.7346289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We present in this paper modifications of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm in order to detect pedestrians with a conventional automotive 77-GHz frequency modulated radar system. These modification include dimension scaling as preprocessing and a generalization of the ε-neighborhood notation by introducing a size parameter to constitute the new Ellipsoid DBSCAN (EDBSCAN) algorithm. With these modifications we could successfully cluster real-world measurement data in order to get reasonable cluster representations of pedestrians in a cluttered environment.
DBSCAN的改进及其在汽车雷达行人识别中的距离/多普勒/DoA测量中的应用
本文提出了基于噪声应用的密度空间聚类(DBSCAN)算法的改进,以便使用传统的77-GHz调频雷达系统检测行人。这些改进包括将维数缩放作为预处理,以及通过引入尺寸参数来推广ε-邻域表示法,从而构成新的椭球DBSCAN (EDBSCAN)算法。通过这些改进,我们可以成功地对真实测量数据进行聚类,以便在混乱的环境中获得行人的合理聚类表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信