{"title":"Disaster detection from aerial imagery with convolutional neural network","authors":"S. Amit, Y. Aoki","doi":"10.1109/KCIC.2017.8228593","DOIUrl":null,"url":null,"abstract":"In recent years, analysis of remote sensing imagery is imperatives in the domain of environmental and climate monitoring primarily for the application of detecting and managing a natural disaster. Satellite imagery or aerial imagery is beneficial because it can widely capture the condition of the surface ground and provides a massive amount of information in a piece of satellite imagery. Since obtaining satellite imagery or aerial imagery is getting more ease in recent years, landslide detection and flood detection is highly in demand. In this paper, we propose automatic natural disaster detection particularly for landslide and flood detection by implementing convolutional neural network (CNN) in extracting the feature of disaster more effectively. CNN is robust to shadow, able to obtain the characteristic of disaster adequately and most importantly able to overcome misdetection or misjudgment by operators, which will affect the effectiveness of disaster relief. The neural network consists of 2 phases: training phase and testing phase. We created training data patches of pre-disaster and post-disaster by clipping and resizing aerial imagery obtained from Google Earth Aerial Imagery. We are currently focusing on two countries which are Japan and Thailand. Training dataset for both landslide and flood consist of 50000 patches. All patches are trained in CNN to extract region where changes occurred or known as disaster region occurred without delay. We obtained accuracy of our system in around 80%–90% of both disaster detections. Based on the promising results, the proposed method may assist in our understanding of the role of deep learning in disaster detection.","PeriodicalId":117148,"journal":{"name":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KCIC.2017.8228593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
In recent years, analysis of remote sensing imagery is imperatives in the domain of environmental and climate monitoring primarily for the application of detecting and managing a natural disaster. Satellite imagery or aerial imagery is beneficial because it can widely capture the condition of the surface ground and provides a massive amount of information in a piece of satellite imagery. Since obtaining satellite imagery or aerial imagery is getting more ease in recent years, landslide detection and flood detection is highly in demand. In this paper, we propose automatic natural disaster detection particularly for landslide and flood detection by implementing convolutional neural network (CNN) in extracting the feature of disaster more effectively. CNN is robust to shadow, able to obtain the characteristic of disaster adequately and most importantly able to overcome misdetection or misjudgment by operators, which will affect the effectiveness of disaster relief. The neural network consists of 2 phases: training phase and testing phase. We created training data patches of pre-disaster and post-disaster by clipping and resizing aerial imagery obtained from Google Earth Aerial Imagery. We are currently focusing on two countries which are Japan and Thailand. Training dataset for both landslide and flood consist of 50000 patches. All patches are trained in CNN to extract region where changes occurred or known as disaster region occurred without delay. We obtained accuracy of our system in around 80%–90% of both disaster detections. Based on the promising results, the proposed method may assist in our understanding of the role of deep learning in disaster detection.