An alternate proof of the monotonicity of the number of positive entries in nonnegative matrix powers

S. Filipovski
{"title":"An alternate proof of the monotonicity of the number of positive entries in nonnegative matrix powers","authors":"S. Filipovski","doi":"10.26493/2590-9770.1280.4DA","DOIUrl":null,"url":null,"abstract":"Let A be a nonnegative real matrix of order n and f(A) denote the number of positive entries in A. In 2018, Xie proved that if f(A) ≤ 3 or f(A) ≥ n2 − 2n + 2, then the sequence (f(Ak))k = 1∞ is monotone for positive integers k. In this note we give an alternate proof of this result by counting walks in a digraph of order n.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1280.4DA","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be a nonnegative real matrix of order n and f(A) denote the number of positive entries in A. In 2018, Xie proved that if f(A) ≤ 3 or f(A) ≥ n2 − 2n + 2, then the sequence (f(Ak))k = 1∞ is monotone for positive integers k. In this note we give an alternate proof of this result by counting walks in a digraph of order n.
非负矩阵幂中正项数单调性的一个备用证明
设A为n阶的非负实数矩阵,f(A)表示A中的正条目数。2018年,Xie证明了如果f(A)≤3或f(A)≥n2−2n + 2,则序列(f(Ak))k = 1∞对于正整数k是单调的。在本文中,我们通过计数n阶有向图中的游动来给出该结果的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信