Flexible Porous Carbon Nanotube Films Intercalated with Active and Functional Materials for Lithium-Ion Batteries

Sun Xiaogang, Li Xu, Chengcheng Wei, W. Jie, Chengcheng Wei, Yapan Huang, Guodong Liang, Hao Hu
{"title":"Flexible Porous Carbon Nanotube Films Intercalated with Active and Functional Materials for Lithium-Ion Batteries","authors":"Sun Xiaogang, Li Xu, Chengcheng Wei, W. Jie, Chengcheng Wei, Yapan Huang, Guodong Liang, Hao Hu","doi":"10.5772/INTECHOPEN.81787","DOIUrl":null,"url":null,"abstract":"Lithium-ion battery (LIB) has occupied the main position of portable electronic devices, and it is also playing an important role in energy storage and large energy storage. Thin film devices based on their diverse functions have great potential for wide application. Novel thin film devices need to be created for the improvement of electrochemical performance and safety of LIB. Our research focused on transparent conductive films and new flexible porous carbon nanotube films for improving and enhancing the energy/power density and cyclic performance of LIB. Mean-while, different carbon nanotube films have their own additional advantages in strength and thermal conductivity to meet various functional requirements of LIBS.","PeriodicalId":375639,"journal":{"name":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion battery (LIB) has occupied the main position of portable electronic devices, and it is also playing an important role in energy storage and large energy storage. Thin film devices based on their diverse functions have great potential for wide application. Novel thin film devices need to be created for the improvement of electrochemical performance and safety of LIB. Our research focused on transparent conductive films and new flexible porous carbon nanotube films for improving and enhancing the energy/power density and cyclic performance of LIB. Mean-while, different carbon nanotube films have their own additional advantages in strength and thermal conductivity to meet various functional requirements of LIBS.
含活性和功能材料的锂离子电池柔性多孔碳纳米管膜
锂离子电池(LIB)已经占据了便携式电子设备的主要地位,在储能和大储能方面也发挥着重要作用。薄膜器件功能多样,具有广阔的应用前景。为了提高锂离子电池的电化学性能和安全性,需要开发新型薄膜器件。我们的研究重点是透明导电薄膜和新型柔性多孔碳纳米管薄膜,以改善和提高锂离子电池的能量/功率密度和循环性能。同时,不同的碳纳米管薄膜在强度和导热性方面具有各自的优势,可以满足LIBS的各种功能需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信