Inverse Kinematics Solution for 5-DoF Robotic Manipulator using Meta-heuristic Techniques

J. Vaishnavi, Bharat Singh, Ankit Vijayvargiya, Rajesh Kumar
{"title":"Inverse Kinematics Solution for 5-DoF Robotic Manipulator using Meta-heuristic Techniques","authors":"J. Vaishnavi, Bharat Singh, Ankit Vijayvargiya, Rajesh Kumar","doi":"10.1109/ICIERA53202.2021.9726739","DOIUrl":null,"url":null,"abstract":"Robotic manipulators have become the key component in the automation industry because of their accuracy. Finding the inverse kinematic (IK) solution (to compute the joint angles for desired end-effector position and orientation) for a robot manipulator is the most challenging problem. Conventional approaches like numerical, geometric, and algebraic have failed to provide the solution due to redundancy/singularity present in IK. This paper presents the IK solution for the 5-DoFs manipu-lator using fourteen meta-heuristic techniques. The end-effector position is determined by solving Forward kinematics using the Denavit-Hartenberg (DH) parameters. The objective function is designed to minimize the Euclidean distance between the actual and desired position/orientation of the end-effector. Comparative analysis of these techniques is based on the computation time and positional error. Result shows that the differential evolution (DE) algorithm outperforms all other techniques in terms of Cartesian (4.42598 $\\times \\boldsymbol{1}\\boldsymbol{0}^{-8}$ cm) and orientation (4.42598 $\\times \\boldsymbol{1}\\boldsymbol{0}^{-8}$ rad) error. Whereas the grey wolf optimization (GWO) algorithm outperforms all in terms of computation time (0.308856 sec).","PeriodicalId":220461,"journal":{"name":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Industrial Electronics Research and Applications (ICIERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIERA53202.2021.9726739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Robotic manipulators have become the key component in the automation industry because of their accuracy. Finding the inverse kinematic (IK) solution (to compute the joint angles for desired end-effector position and orientation) for a robot manipulator is the most challenging problem. Conventional approaches like numerical, geometric, and algebraic have failed to provide the solution due to redundancy/singularity present in IK. This paper presents the IK solution for the 5-DoFs manipu-lator using fourteen meta-heuristic techniques. The end-effector position is determined by solving Forward kinematics using the Denavit-Hartenberg (DH) parameters. The objective function is designed to minimize the Euclidean distance between the actual and desired position/orientation of the end-effector. Comparative analysis of these techniques is based on the computation time and positional error. Result shows that the differential evolution (DE) algorithm outperforms all other techniques in terms of Cartesian (4.42598 $\times \boldsymbol{1}\boldsymbol{0}^{-8}$ cm) and orientation (4.42598 $\times \boldsymbol{1}\boldsymbol{0}^{-8}$ rad) error. Whereas the grey wolf optimization (GWO) algorithm outperforms all in terms of computation time (0.308856 sec).
基于元启发式技术的五自由度机械臂运动学逆解
机器人机械手由于精度高,已成为自动化工业的关键组成部分。求解机器人机械臂的运动学逆解(计算末端执行器位置和姿态的关节角)是最具挑战性的问题。传统的方法,如数值、几何和代数,由于在IK中存在冗余/奇点而无法提供解决方案。本文提出了使用14种元启发式技术的五自由度机械手的IK解决方案。利用Denavit-Hartenberg (DH)参数求解正运动学来确定末端执行器的位置。目标函数被设计为最小化末端执行器的实际和期望位置/方向之间的欧几里德距离。基于计算时间和位置误差对这些技术进行了比较分析。结果表明,差分进化(DE)算法在笛卡尔(4.42598 $\times \boldsymbol{1}\boldsymbol{0}^{-8}$ cm)和方向(4.42598 $\times \boldsymbol{1}\boldsymbol{0}^{-8}$ rad)误差方面优于所有其他技术。而灰狼优化(GWO)算法在计算时间(0.308856秒)方面优于所有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信