Social Groups Based Content Caching in Wireless Networks

Nimrah Mustafa, Imdadullah Khan, Muhammad Asad Khan, Z. Uzmi
{"title":"Social Groups Based Content Caching in Wireless Networks","authors":"Nimrah Mustafa, Imdadullah Khan, Muhammad Asad Khan, Z. Uzmi","doi":"10.1145/3479241.3486694","DOIUrl":null,"url":null,"abstract":"The unprecedented growth of wireless mobile traffic, mainly due to multimedia traffic over online social platforms has strained the resources in the mobile backhaul network. A promising approach to reduce the backhaul load is to proactively cache content at the network edge, taking into account the overlaid social network. Known caching schemes require complete knowledge of the social graph and mainly focus on one-to-one interactions forgoing the prevalent mode of content sharing among circles of 'friends'. We propose Bingo, a proactive content caching scheme that leverages the presence of interest groups in online social networks. The mobile network operator (MNO) can choose to incrementally deploy Bingo at select network nodes (base stations, packet core, data center) based on user profiles and revenue numbers. We approximate the group memberships of users using the available user-content request logs without any prior knowledge of the overlaid social graph. Bingo can cater to the evolving nature of online social groups and file popularity distribution for making caching decisions. We use synthetically generated group structures and simulate user requests at the base station for empirical evaluation against traditional and recent caching schemes. Bingo achieves up to 30%-34% gain over the best baseline.","PeriodicalId":349943,"journal":{"name":"Proceedings of the 19th ACM International Symposium on Mobility Management and Wireless Access","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM International Symposium on Mobility Management and Wireless Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3479241.3486694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The unprecedented growth of wireless mobile traffic, mainly due to multimedia traffic over online social platforms has strained the resources in the mobile backhaul network. A promising approach to reduce the backhaul load is to proactively cache content at the network edge, taking into account the overlaid social network. Known caching schemes require complete knowledge of the social graph and mainly focus on one-to-one interactions forgoing the prevalent mode of content sharing among circles of 'friends'. We propose Bingo, a proactive content caching scheme that leverages the presence of interest groups in online social networks. The mobile network operator (MNO) can choose to incrementally deploy Bingo at select network nodes (base stations, packet core, data center) based on user profiles and revenue numbers. We approximate the group memberships of users using the available user-content request logs without any prior knowledge of the overlaid social graph. Bingo can cater to the evolving nature of online social groups and file popularity distribution for making caching decisions. We use synthetically generated group structures and simulate user requests at the base station for empirical evaluation against traditional and recent caching schemes. Bingo achieves up to 30%-34% gain over the best baseline.
无线网络中基于社会群体的内容缓存
无线移动流量的空前增长,主要是由于在线社交平台上的多媒体流量,使移动回程网络资源紧张。减少回程负载的一种很有前途的方法是在网络边缘主动缓存内容,同时考虑到覆盖的社交网络。已知的缓存方案需要完全了解社交图谱,并且主要侧重于一对一的互动,而不是在“朋友圈”之间分享内容的流行模式。我们提出Bingo,一个主动的内容缓存方案,利用在线社交网络中兴趣群体的存在。移动网络运营商(MNO)可以根据用户概况和收入数字,选择在选定的网络节点(基站、分组核心、数据中心)上逐步部署Bingo。我们使用可用的用户内容请求日志来近似用户的组成员关系,而不需要事先了解覆盖的社交图。Bingo可以满足在线社会群体和文件流行度分布的不断发展的特性,以便做出缓存决策。我们使用综合生成的组结构,并在基站模拟用户请求,对传统和最新的缓存方案进行经验评估。宾果游戏在最佳基线上获得高达30%-34%的收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信