Approximate iterative Least Squares algorithms for GPS positioning

Yuheng He, Rainer Martin, A. Bilgic
{"title":"Approximate iterative Least Squares algorithms for GPS positioning","authors":"Yuheng He, Rainer Martin, A. Bilgic","doi":"10.1109/ISSPIT.2010.5711784","DOIUrl":null,"url":null,"abstract":"The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS) and Differential GPS (DGPS). This is particularly important for smart phones with battery limitations. With the help of the information from base stations, Assisted GPS (AGPS) and DGPS can do the positioning more efficiently and more precisely than GPS. In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for a reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suitable for hardware implementation.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS) and Differential GPS (DGPS). This is particularly important for smart phones with battery limitations. With the help of the information from base stations, Assisted GPS (AGPS) and DGPS can do the positioning more efficiently and more precisely than GPS. In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for a reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suitable for hardware implementation.
GPS定位的近似迭代最小二乘算法
研究了全球定位系统(GPS)和差分GPS (DGPS)定位算法的有效实现。这对电池有限的智能手机尤为重要。辅助GPS (Assisted GPS, AGPS)和DGPS利用基站的信息,可以比GPS更有效、更精确地进行定位。为了进行定位,需要接收机与卫星之间的伪距。最常用的伪点位置计算算法是非线性最小二乘法(LS)。线性化是将非线性方程组转化为迭代过程,每次迭代需要求解一个线性方程组,即迭代地应用线性LS方法。在计算QR分解时使用基于cordic的近似旋转来求解每次迭代中的LS问题。通过选择近似的精度,例如每次旋转选择最优的CORDIC角度,可以简化LS的计算。利用实际GPS数据,比较了不同迭代次数和不同近似精度下定位结果的精度。结果表明,非常粗糙的近似足以获得合理的定位精度。因此,该方法大大降低了计算复杂度,非常适合硬件实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信