{"title":"Improving Accuracy and Comparability of Turbocharger Performance Measurements","authors":"M. Schinnerl, M. Bogner, J. Ehrhard","doi":"10.1115/gt2019-90250","DOIUrl":null,"url":null,"abstract":"\n The reduction of fuel consumption and emissions is the most dominant challenge in powertrain development. Therefore, engine and turbocharger have to be matched with high accuracy to achieve optimum powertrain efficiencies.\n With respect to relevant engine operating points, compressor maps can be measured in full operating range on a standard hot gas test bench. Even though there is no need for extrapolation of the operating range, they have to be corrected for the impact of heat transfer to represent the adiabatic performance of the compressor stage.\n The common approach to evaluate the turbine efficiency is to apply the energy balance of the entire turbocharger where the turbine power is the sum of the compressor power and the friction losses of the radial and axial journal bearings. The adiabatic compressor power in combination with the calculation of the friction losses by using validated run-up simulations enables the evaluation of the isentropic turbine efficiency and the comparability to CFD simulations of the turbine stage.\n For reasons of comparability to CFD simulations, which can predict a wide operating range of the turbine stage, the limited measureable turbine operating range is enhanced by a so-called compressor closed loop unit (CCLU). This additional test device enables to vary the demand of compressor power for the same operating points as in the standard mapping and therefore to enlarge the measureable turbine operating range. In combination with proper extrapolation methods, the isentropic turbine efficiency can now be compared to CFD simulations.","PeriodicalId":105494,"journal":{"name":"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Microturbines, Turbochargers, and Small Turbomachines; Steam Turbines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-90250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The reduction of fuel consumption and emissions is the most dominant challenge in powertrain development. Therefore, engine and turbocharger have to be matched with high accuracy to achieve optimum powertrain efficiencies.
With respect to relevant engine operating points, compressor maps can be measured in full operating range on a standard hot gas test bench. Even though there is no need for extrapolation of the operating range, they have to be corrected for the impact of heat transfer to represent the adiabatic performance of the compressor stage.
The common approach to evaluate the turbine efficiency is to apply the energy balance of the entire turbocharger where the turbine power is the sum of the compressor power and the friction losses of the radial and axial journal bearings. The adiabatic compressor power in combination with the calculation of the friction losses by using validated run-up simulations enables the evaluation of the isentropic turbine efficiency and the comparability to CFD simulations of the turbine stage.
For reasons of comparability to CFD simulations, which can predict a wide operating range of the turbine stage, the limited measureable turbine operating range is enhanced by a so-called compressor closed loop unit (CCLU). This additional test device enables to vary the demand of compressor power for the same operating points as in the standard mapping and therefore to enlarge the measureable turbine operating range. In combination with proper extrapolation methods, the isentropic turbine efficiency can now be compared to CFD simulations.