Gaussian Process for Nonlinear Regression via Memristive Crossbars

Gianluca Zoppo, Anil Korkmaz, Francesco Marrone, Su-in Yi, S. Palermo, F. Corinto, R. S. Williams
{"title":"Gaussian Process for Nonlinear Regression via Memristive Crossbars","authors":"Gianluca Zoppo, Anil Korkmaz, Francesco Marrone, Su-in Yi, S. Palermo, F. Corinto, R. S. Williams","doi":"10.1109/ISCAS46773.2023.10181785","DOIUrl":null,"url":null,"abstract":"Over the last decade, Gaussian processes (GPs) have become popular in the area of machine learning and data analysis for their flexibility and robustness. Despite their attractive formulation, practical use in large-scale problems remains out of reach due to computational complexity. Existing direct computational methods for manipulations involving large-scale $n\\times n$ covariance matrices require $O(n^{3})$ calculations. In this work, we present the design and evaluation of a simulated computing platform for exact GP inference, that achieves true model parallelism using memristive crossbars. To achieve a one-shot solution, a linear equation solver and a vector-matrix multiplication solver crossbar configurations are used together, reducing the number of operations from $O(n^{3})$ to $O(n)$. The transistor level op-amps, ADC models for quantization, circuit and interconnect parasitics, together with the finite memristor precision are incorporated into the system simulation. The analog system resulted in %1.51 mean error and %2.93 average variance error in solving a nonlinear regression problem. The proposed method achieved 9× to 144× better energy efficiency compared to TPU and 7× compared to a custom analog linear regression solver.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last decade, Gaussian processes (GPs) have become popular in the area of machine learning and data analysis for their flexibility and robustness. Despite their attractive formulation, practical use in large-scale problems remains out of reach due to computational complexity. Existing direct computational methods for manipulations involving large-scale $n\times n$ covariance matrices require $O(n^{3})$ calculations. In this work, we present the design and evaluation of a simulated computing platform for exact GP inference, that achieves true model parallelism using memristive crossbars. To achieve a one-shot solution, a linear equation solver and a vector-matrix multiplication solver crossbar configurations are used together, reducing the number of operations from $O(n^{3})$ to $O(n)$. The transistor level op-amps, ADC models for quantization, circuit and interconnect parasitics, together with the finite memristor precision are incorporated into the system simulation. The analog system resulted in %1.51 mean error and %2.93 average variance error in solving a nonlinear regression problem. The proposed method achieved 9× to 144× better energy efficiency compared to TPU and 7× compared to a custom analog linear regression solver.
忆阻横条非线性回归的高斯过程
在过去的十年中,高斯过程(gp)因其灵活性和鲁棒性而在机器学习和数据分析领域变得流行。尽管它们的公式很有吸引力,但由于计算的复杂性,在大规模问题中的实际应用仍然遥不可及。现有的直接计算方法涉及大规模的$n\乘以n$协方差矩阵,需要$O(n^{3})$计算。在这项工作中,我们提出了一个精确GP推理的模拟计算平台的设计和评估,该平台使用记忆交叉棒实现了真正的模型并行性。为了实现一次求解,线性方程求解器和向量矩阵乘法求解器交叉配置一起使用,将操作次数从$O(n^{3})$减少到$O(n)$。晶体管级运算放大器、量化ADC模型、电路和互连寄生以及有限忆阻器精度被纳入系统仿真。模拟系统求解非线性回归问题的平均误差为%1.51,平均方差误差为%2.93。与TPU相比,该方法的能源效率提高了9倍至144倍,与定制模拟线性回归求解器相比提高了7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信