Methods to check robust stability in the parameter space

B. Chang, X.P. Li, H. Yeh, S. Banda
{"title":"Methods to check robust stability in the parameter space","authors":"B. Chang, X.P. Li, H. Yeh, S. Banda","doi":"10.1109/CDC.1989.70479","DOIUrl":null,"url":null,"abstract":"In the analysis and design of robust control systems, it is essential to check whether the closed-loop system is stable or not in a given perturbation area of the parameter space. Two methods for checking the robust stability in a perturbation domain of interest are considered. The first is the classical positivity checking approach based on the Routh-Hurwitz theorem and minima search, and the second is the polytopic polynomial approach with a dynamic perturbation domain dividing technique. Both approaches can be employed to compute the real-structured singular value or the real multivariable stability margin and to locate all unstable regions in a given perturbation domain.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the analysis and design of robust control systems, it is essential to check whether the closed-loop system is stable or not in a given perturbation area of the parameter space. Two methods for checking the robust stability in a perturbation domain of interest are considered. The first is the classical positivity checking approach based on the Routh-Hurwitz theorem and minima search, and the second is the polytopic polynomial approach with a dynamic perturbation domain dividing technique. Both approaches can be employed to compute the real-structured singular value or the real multivariable stability margin and to locate all unstable regions in a given perturbation domain.<>
参数空间鲁棒稳定性检验方法
在鲁棒控制系统的分析和设计中,检查闭环系统在参数空间的给定摄动区域内是否稳定是非常重要的。考虑了两种检测扰动域鲁棒稳定性的方法。第一种是基于Routh-Hurwitz定理和最小搜索的经典正性检验方法,第二种是采用动态摄动分域技术的多面体多项式方法。这两种方法均可用于计算实结构奇异值或实多变量稳定裕度,并可定位给定扰动域中的所有不稳定区域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信