Autoencoder Model Exploration for Multi-Layer Video Compression

Luiz Henrique Cancellier, M. Grellert, José Luís Almada Güntzel, L. Cruz
{"title":"Autoencoder Model Exploration for Multi-Layer Video Compression","authors":"Luiz Henrique Cancellier, M. Grellert, José Luís Almada Güntzel, L. Cruz","doi":"10.1109/EUVIP53989.2022.9922780","DOIUrl":null,"url":null,"abstract":"The use of autoencoder models for image and video compression have been explored by a number of works published in recent years. While those works perform the original data compression in a single layer, in this work we propose the use of autoencoder models in two-layered video coding. The adoption of multi-layer encoder provides scalability and allows us for decoupling the traditional video coding implementation from the NN solutions. By restricting the use of the Neural Network (NN) solution in the enhancement layer, it becomes possible to decode the base layer bitstream without the necessity of running the decoding process with the NN. We implemented and evaluated two autoencoder models: one using a symmetric encoder/decoder architecture, and an asymmetric alternative that employs more layers on the decoder side. The models were trained to compress residues for a scenario using All Intra encoding with spatial scalability. The Asymmetric model outperformed the Symmetric one by providing better compression rates and quality results, which is confirmed by the respective BD-Rate and BD-PSNR average results of -17.06% and 0.7dB, respectively.","PeriodicalId":120249,"journal":{"name":"2022 10th European Workshop on Visual Information Processing (EUVIP)","volume":"2001 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP53989.2022.9922780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of autoencoder models for image and video compression have been explored by a number of works published in recent years. While those works perform the original data compression in a single layer, in this work we propose the use of autoencoder models in two-layered video coding. The adoption of multi-layer encoder provides scalability and allows us for decoupling the traditional video coding implementation from the NN solutions. By restricting the use of the Neural Network (NN) solution in the enhancement layer, it becomes possible to decode the base layer bitstream without the necessity of running the decoding process with the NN. We implemented and evaluated two autoencoder models: one using a symmetric encoder/decoder architecture, and an asymmetric alternative that employs more layers on the decoder side. The models were trained to compress residues for a scenario using All Intra encoding with spatial scalability. The Asymmetric model outperformed the Symmetric one by providing better compression rates and quality results, which is confirmed by the respective BD-Rate and BD-PSNR average results of -17.06% and 0.7dB, respectively.
多层视频压缩的自编码器模型探索
在图像和视频压缩中使用自动编码器模型已经被近年来出版的一些作品所探索。虽然这些工作在单层中执行原始数据压缩,但在这项工作中,我们提出在双层视频编码中使用自动编码器模型。多层编码器的采用提供了可扩展性,并允许我们将传统的视频编码实现与神经网络解决方案解耦。通过限制在增强层中使用神经网络(NN)解决方案,可以在不需要运行神经网络解码过程的情况下对基础层比特流进行解码。我们实现并评估了两种自动编码器模型:一种使用对称编码器/解码器架构,另一种使用非对称的替代方案,在解码器端使用更多层。使用具有空间可扩展性的All Intra编码,训练模型来压缩场景的残数。非对称模型优于对称模型,提供了更好的压缩率和质量结果,BD-Rate和BD-PSNR的平均结果分别为-17.06%和0.7dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信