Accelerating Gene-pool Optimal Mixing Evolutionary Algorithm for Neural Architecture Search with Synaptic Flow

Khoa Huu Tran, Luc Truong, An Vo, N. H. Luong
{"title":"Accelerating Gene-pool Optimal Mixing Evolutionary Algorithm for Neural Architecture Search with Synaptic Flow","authors":"Khoa Huu Tran, Luc Truong, An Vo, N. H. Luong","doi":"10.1145/3583133.3596438","DOIUrl":null,"url":null,"abstract":"This study experiments the integration of the zero-cost proxy metric Synaptic Flow with the Gene-pool Optimal Mixing (GOM) crossover to efficiently generate new candidates during an evolutionary neural architecture search (ENAS). Our experiments demonstrate that the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) with Synaptic Flow can obtain top-performing architectures with a small additional overhead compared to a classic Genetic Algorithm. Code is available at: https://github.com/ELO-Lab/SF-GOMENAS.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"2005 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study experiments the integration of the zero-cost proxy metric Synaptic Flow with the Gene-pool Optimal Mixing (GOM) crossover to efficiently generate new candidates during an evolutionary neural architecture search (ENAS). Our experiments demonstrate that the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) with Synaptic Flow can obtain top-performing architectures with a small additional overhead compared to a classic Genetic Algorithm. Code is available at: https://github.com/ELO-Lab/SF-GOMENAS.
基于突触流的神经结构搜索加速基因库最优混合进化算法
本研究将零成本代理度量Synaptic Flow与基因池最优混合(GOM)交叉相结合,在进化神经结构搜索(ENAS)中有效地生成新的候选对象。我们的实验表明,与经典遗传算法相比,带有Synaptic Flow的基因池最优混合进化算法(gome)可以在很小的额外开销下获得性能最好的架构。代码可从https://github.com/ELO-Lab/SF-GOMENAS获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信