Development of microstructures for the formation of metamaterial properties of piezoelectric elements

V. S. But, A. Kobelev, S. Karpeev
{"title":"Development of microstructures for the formation of metamaterial properties of piezoelectric elements","authors":"V. S. But, A. Kobelev, S. Karpeev","doi":"10.18287/2541-7533-2022-21-4-97-108","DOIUrl":null,"url":null,"abstract":"Microcells were designed for subsequent modeling of piezoelectric and optical elements on their basis. The development of piezoelectric and optical elements from microcells was carried out and models were prepared for 3D printing. These designs can be used in practice as piezoacoustic or piezoelectric sensors if piezoelectric powder is added to their composition, for example, in ultrasonic flow meters, or used to create optical structures, for example, diffractive optical elements. The key characteristics and coefficients of piezoelectric structures, such as dielectric constant, conversion coefficient, dielectric loss coefficient, mechanical Q-factor, frequency constant, electromechanical coupling coefficient, piezoelectric charge coefficient, piezoelectric stress coefficient, elastic compliance coefficient, degradation rate, Curie point are analyzed. Elements produced by 3D printing will have properties different from those of elements produced by standard methods. These structures open up new opportunities for the development of ultrasonic research, mechanical engineering and instrument making.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7533-2022-21-4-97-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microcells were designed for subsequent modeling of piezoelectric and optical elements on their basis. The development of piezoelectric and optical elements from microcells was carried out and models were prepared for 3D printing. These designs can be used in practice as piezoacoustic or piezoelectric sensors if piezoelectric powder is added to their composition, for example, in ultrasonic flow meters, or used to create optical structures, for example, diffractive optical elements. The key characteristics and coefficients of piezoelectric structures, such as dielectric constant, conversion coefficient, dielectric loss coefficient, mechanical Q-factor, frequency constant, electromechanical coupling coefficient, piezoelectric charge coefficient, piezoelectric stress coefficient, elastic compliance coefficient, degradation rate, Curie point are analyzed. Elements produced by 3D printing will have properties different from those of elements produced by standard methods. These structures open up new opportunities for the development of ultrasonic research, mechanical engineering and instrument making.
压电元件超材料特性形成的微结构研究进展
在此基础上设计了用于压电元件和光学元件后续建模的微单元。利用微电池进行了压电和光学元件的开发,并制备了3D打印模型。如果将压电粉末添加到其组成中,这些设计可以在实践中用作压电或压电传感器,例如,在超声波流量计中,或用于制造光学结构,例如,衍射光学元件。分析了压电结构的介电常数、转换系数、介电损耗系数、力学q系数、频率常数、机电耦合系数、压电电荷系数、压电应力系数、弹性柔度系数、退化率、居里点等关键特性和系数。3D打印产生的元素将具有不同于标准方法产生的元素的属性。这些结构为超声研究、机械工程和仪器制造的发展开辟了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信