On the parallel I/O optimality of linear algebra kernels: near-optimal LU factorization

Grzegorz Kwasniewski, Tal Ben-Nun, A. Ziogas, Timo Schneider, Maciej Besta, T. Hoefler
{"title":"On the parallel I/O optimality of linear algebra kernels: near-optimal LU factorization","authors":"Grzegorz Kwasniewski, Tal Ben-Nun, A. Ziogas, Timo Schneider, Maciej Besta, T. Hoefler","doi":"10.1145/3437801.3441590","DOIUrl":null,"url":null,"abstract":"Dense linear algebra kernels are fundamental components of many scientific computing applications. In this work we present a novel method of deriving parallel I/O lower bounds for this broad family of programs. Based on the X-Partitioning abstraction, our method explicitly captures inter-statement dependencies. Applying our analysis to LU factorization, we derive COnfLUX, an LU algorithm with the parallel I/O cost of N3/([EQUATION]) communicated elements per processor - only 1/3× over our established lower bound. We evaluate COnfLUX on various problem sizes, demonstrating empirical results that match our theoretical analysis, communicating less than Cray ScaLAPACK, SLATE, and the asymptotically-optimal CANDMC library. Running on 1,024 nodes of Piz Daint, COnfLUX communicates 1.6× less than the second-best implementation and is expected to communicate 2.1× less on a full-scale run on Summit.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Dense linear algebra kernels are fundamental components of many scientific computing applications. In this work we present a novel method of deriving parallel I/O lower bounds for this broad family of programs. Based on the X-Partitioning abstraction, our method explicitly captures inter-statement dependencies. Applying our analysis to LU factorization, we derive COnfLUX, an LU algorithm with the parallel I/O cost of N3/([EQUATION]) communicated elements per processor - only 1/3× over our established lower bound. We evaluate COnfLUX on various problem sizes, demonstrating empirical results that match our theoretical analysis, communicating less than Cray ScaLAPACK, SLATE, and the asymptotically-optimal CANDMC library. Running on 1,024 nodes of Piz Daint, COnfLUX communicates 1.6× less than the second-best implementation and is expected to communicate 2.1× less on a full-scale run on Summit.
线性代数核的并行I/O最优性:近最优LU分解
密集线性代数核是许多科学计算应用的基本组成部分。在这项工作中,我们提出了一种新的方法来推导这种广泛的程序族的并行I/O下界。基于X-Partitioning抽象,我们的方法显式地捕获语句间依赖关系。将我们的分析应用于LU分解,我们推导出COnfLUX,这是一种LU算法,其并行I/O成本为每个处理器N3/([等式])通信元素-仅为我们建立的下界的1/3。我们在不同的问题规模上评估COnfLUX,证明了与我们的理论分析相匹配的经验结果,比Cray ScaLAPACK, SLATE和渐近最优CANDMC库的通信更少。在Piz paint的1024个节点上运行,COnfLUX的通信比第二好的实现少1.6倍,预计在Summit上全面运行时通信将减少2.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信