{"title":"Federated Graph Learning with Periodic Neighbour Sampling","authors":"Bingqian Du, Chuan Wu","doi":"10.1109/IWQoS54832.2022.9812908","DOIUrl":null,"url":null,"abstract":"Graph Convolutional Networks (GCN) proposed recently have achieved promising results on various graph learning tasks. Federated learning (FL) for GCN training is needed when learning from geo-distributed graph datasets. Existing FL paradigms are inefficient for geo-distributed GCN training since neighbour sampling across geo-locations will soon dominate the whole training process and consume large WAN bandwidth. We derive a practical federated graph learning algorithm, carefully striking the trade-off among GCN convergence error, wall-clock runtime, and neighbour sampling interval. Our analysis is divided into two cases according to the budget for neighbour sampling. In the unconstrained case, we obtain the optimal neighbour sampling interval, that achieves the best trade-off between convergence and runtime; in the constrained case, we show that determining the optimal sampling interval is actually an online problem and we propose a novel online algorithm with bounded competitive ratio to solve it. Combining the two cases, we propose a unified algorithm to decide the neighbour sampling interval in federated graph learning, and demonstrate its effectiveness with extensive simulation over graph datasets from real applications.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Graph Convolutional Networks (GCN) proposed recently have achieved promising results on various graph learning tasks. Federated learning (FL) for GCN training is needed when learning from geo-distributed graph datasets. Existing FL paradigms are inefficient for geo-distributed GCN training since neighbour sampling across geo-locations will soon dominate the whole training process and consume large WAN bandwidth. We derive a practical federated graph learning algorithm, carefully striking the trade-off among GCN convergence error, wall-clock runtime, and neighbour sampling interval. Our analysis is divided into two cases according to the budget for neighbour sampling. In the unconstrained case, we obtain the optimal neighbour sampling interval, that achieves the best trade-off between convergence and runtime; in the constrained case, we show that determining the optimal sampling interval is actually an online problem and we propose a novel online algorithm with bounded competitive ratio to solve it. Combining the two cases, we propose a unified algorithm to decide the neighbour sampling interval in federated graph learning, and demonstrate its effectiveness with extensive simulation over graph datasets from real applications.