Building a commonsense knowledge base for context-awareness inference

Li Zhang, Shijian Li, Gang Pan
{"title":"Building a commonsense knowledge base for context-awareness inference","authors":"Li Zhang, Shijian Li, Gang Pan","doi":"10.1109/ICCA.2013.6565173","DOIUrl":null,"url":null,"abstract":"Current context-aware systems often model rigid inference rules for limited user contexts, which constrain their effectiveness in real world usage. In order to achieve flexible context-aware inference, a commonsense knowledge base is essential. But such knowledge base is hard to construct manually. This paper proposes some automatic algorithms to extract commonsense directly from text corpuses. We evaluate the extraction algorithms with comparison with human annotators. We also evaluate the effectiveness of the knowledge base in practical context-awareness inference.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6565173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current context-aware systems often model rigid inference rules for limited user contexts, which constrain their effectiveness in real world usage. In order to achieve flexible context-aware inference, a commonsense knowledge base is essential. But such knowledge base is hard to construct manually. This paper proposes some automatic algorithms to extract commonsense directly from text corpuses. We evaluate the extraction algorithms with comparison with human annotators. We also evaluate the effectiveness of the knowledge base in practical context-awareness inference.
为上下文感知推理构建常识性知识库
当前的上下文感知系统通常为有限的用户上下文建模严格的推理规则,这限制了它们在现实世界中使用的有效性。为了实现灵活的上下文感知推理,常识知识库是必不可少的。但是这样的知识库很难手工构建。本文提出了一些直接从文本语料库中提取常识的自动算法。我们通过与人类注释器的比较来评估提取算法。我们还评估了知识库在实际上下文感知推理中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信