Monitoring crop growth inter-annual variability from MODIS time series: Performance comparison between crop specific green area index and current global leaf area index products

G. Duveiller, F. Baret, P. Defourny
{"title":"Monitoring crop growth inter-annual variability from MODIS time series: Performance comparison between crop specific green area index and current global leaf area index products","authors":"G. Duveiller, F. Baret, P. Defourny","doi":"10.1109/MULTI-TEMP.2011.6005037","DOIUrl":null,"url":null,"abstract":"Optical remote sensing time series can be used to retrieve biophysical variables indicating crop status, such as leaf area index (LAI) or, more appropriately, green are index (GAI). If these variables are sensible to inter-annual seasonal variations, they can be of great value for crop growth monitoring, especially if they can be coupled with ecophysiological models using data assimilation. This study presents a multi-annual comparison between currently available global LAI products and crop specific GAI retrieved from MODIS 250 m imagery obtained by controlling pixel-target adequacy. This comparison is done over a region in Belgium with fragmented agricultural landscapes. Results indicate that, by assuring a crop specific information and smoothing information using thermal time, the GAI product has a higher sensitivity to the variability of growing conditions that may be encountered across the region, and thus out-performs the other LAI products.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optical remote sensing time series can be used to retrieve biophysical variables indicating crop status, such as leaf area index (LAI) or, more appropriately, green are index (GAI). If these variables are sensible to inter-annual seasonal variations, they can be of great value for crop growth monitoring, especially if they can be coupled with ecophysiological models using data assimilation. This study presents a multi-annual comparison between currently available global LAI products and crop specific GAI retrieved from MODIS 250 m imagery obtained by controlling pixel-target adequacy. This comparison is done over a region in Belgium with fragmented agricultural landscapes. Results indicate that, by assuring a crop specific information and smoothing information using thermal time, the GAI product has a higher sensitivity to the variability of growing conditions that may be encountered across the region, and thus out-performs the other LAI products.
从MODIS时间序列监测作物生长的年际变化:作物特定绿色面积指数与当前全球叶面积指数产品之间的性能比较
光学遥感时间序列可用于检索指示作物状况的生物物理变量,如叶面积指数(LAI)或更合适的绿度指数(GAI)。如果这些变量对年际季节变化敏感,则它们对作物生长监测具有重要价值,特别是如果它们可以与使用数据同化的生态生理模型相结合。本研究通过控制像元目标充分性获得MODIS 250 m影像,对当前可用的全球LAI产品与作物特定GAI进行了多年比较。这个比较是在比利时一个农业景观分散的地区进行的。结果表明,通过确保作物特定信息和使用热时间平滑信息,GAI产品对整个地区可能遇到的生长条件的变异性具有更高的敏感性,从而优于其他LAI产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信