Plasma Parameter Inversion Base on Deep Learning Approach

Fei Xu, Y. Bo, Lixia Yang, M. Jin, Zhixiang Huang, Wei Chen
{"title":"Plasma Parameter Inversion Base on Deep Learning Approach","authors":"Fei Xu, Y. Bo, Lixia Yang, M. Jin, Zhixiang Huang, Wei Chen","doi":"10.1109/ICEICT55736.2022.9909309","DOIUrl":null,"url":null,"abstract":"As a dispersive medium, plasma has broad application prospects in stealth antenna and new attenuator design. Plasma parameters, such as electron density and collision frequency, are the basis for studying plasma property. At present, conventional plasma parameter inversion algorithms encounter some difficulties, such as large amount of calculation, long inversion time, low inversion accuracy. A deep learning model for plasma parameter inversion is proposed in this paper. The model takes full advantage of the characteristics of deep neural network, with simple structure, fast operation speed. And the plasma parameters can be reconstructed with high precision. The simulation results indicate that the inversion results are better than traditional methods even in the presence of noise.","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9909309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a dispersive medium, plasma has broad application prospects in stealth antenna and new attenuator design. Plasma parameters, such as electron density and collision frequency, are the basis for studying plasma property. At present, conventional plasma parameter inversion algorithms encounter some difficulties, such as large amount of calculation, long inversion time, low inversion accuracy. A deep learning model for plasma parameter inversion is proposed in this paper. The model takes full advantage of the characteristics of deep neural network, with simple structure, fast operation speed. And the plasma parameters can be reconstructed with high precision. The simulation results indicate that the inversion results are better than traditional methods even in the presence of noise.
基于深度学习方法的等离子体参数反演
等离子体作为一种色散介质,在隐身天线和新型衰减器设计中有着广阔的应用前景。电子密度和碰撞频率等等离子体参数是研究等离子体特性的基础。目前,传统的等离子体参数反演算法存在计算量大、反演时间长、反演精度低等问题。提出了一种用于等离子体参数反演的深度学习模型。该模型充分利用了深度神经网络的特点,结构简单,运算速度快。等离子体参数的重建精度较高。仿真结果表明,即使在存在噪声的情况下,该方法的反演结果也优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信