Listwise vs Pagewise: Towards Better Ranking Strategies for Heterogeneous Search Results

Junqi Zhang
{"title":"Listwise vs Pagewise: Towards Better Ranking Strategies for Heterogeneous Search Results","authors":"Junqi Zhang","doi":"10.1145/3289600.3291596","DOIUrl":null,"url":null,"abstract":"As heterogeneous verticals account for more and more in search engines, users' preference of search results is largely affected by their presentations. Apart from texts, multimedia information such as images and videos has been widely adopted as it makes the search engine result pages (SERPs) more informative and attractive. It is more proper to regard the SERP as an information union, not separate search results because they interact with each other. Considering these changes in search engines, we plan to better exploit the contents of search results displayed on SERPs through deep neural networks and formulate the pagewise optimization of SERPs as a reinforcement learning problem.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"2004 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As heterogeneous verticals account for more and more in search engines, users' preference of search results is largely affected by their presentations. Apart from texts, multimedia information such as images and videos has been widely adopted as it makes the search engine result pages (SERPs) more informative and attractive. It is more proper to regard the SERP as an information union, not separate search results because they interact with each other. Considering these changes in search engines, we plan to better exploit the contents of search results displayed on SERPs through deep neural networks and formulate the pagewise optimization of SERPs as a reinforcement learning problem.
列表vs页面:异构搜索结果更好的排名策略
随着异构垂直领域在搜索引擎中所占的比重越来越大,用户对搜索结果的偏好很大程度上受其呈现方式的影响。除了文字外,多媒体资讯,例如图片和视频,已被广泛采用,使搜寻引擎结果页更有资讯和吸引力。将SERP看作是一个信息联盟,而不是单独的搜索结果,因为它们之间是相互作用的。考虑到搜索引擎的这些变化,我们计划通过深度神经网络更好地利用serp上显示的搜索结果内容,并将serp的逐页优化制定为强化学习问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信