A. W. Zomagboguelou, C. Galup-Montoro, M. C. Schneider
{"title":"A 150nW 32 kHz mobility-compensated relaxation oscillator with +/−30ppm/°C temperature stability","authors":"A. W. Zomagboguelou, C. Galup-Montoro, M. C. Schneider","doi":"10.1109/LASCAS.2016.7451091","DOIUrl":null,"url":null,"abstract":"A relaxation oscillator is presented that makes use of a current-mode Schmitt trigger to reduce the effects of process, voltage and temperature (PVT) variations. A detailed analysis of the oscillator, including the temperature performance, is presented and verified by experimental results. A test chip with a typical frequency of 32 kHz was fabricated in a 0.18 μm standard CMOS process. The measured frequency variations were +/- 30 ppm/°C for temperature variation from -20 °C to 80°C and +/- 500 ppm/V for supply voltage variation from 0.7 V to 1.8 V. The short term stability is 66 ppm (2 ns) of jitter while the long term stability is 500 ppm of Allan deviation after 10 seconds. A careful design results in a total area of 0.1 mm2 and a power consumption of 150 nW.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A relaxation oscillator is presented that makes use of a current-mode Schmitt trigger to reduce the effects of process, voltage and temperature (PVT) variations. A detailed analysis of the oscillator, including the temperature performance, is presented and verified by experimental results. A test chip with a typical frequency of 32 kHz was fabricated in a 0.18 μm standard CMOS process. The measured frequency variations were +/- 30 ppm/°C for temperature variation from -20 °C to 80°C and +/- 500 ppm/V for supply voltage variation from 0.7 V to 1.8 V. The short term stability is 66 ppm (2 ns) of jitter while the long term stability is 500 ppm of Allan deviation after 10 seconds. A careful design results in a total area of 0.1 mm2 and a power consumption of 150 nW.