{"title":"Globally Stable Bearing-Only Formation Control of Multi-Agent Systems","authors":"Xiaolei Li, M. Er, Guanghong Yang, Ning Wang","doi":"10.1109/ICARCV.2018.8581218","DOIUrl":null,"url":null,"abstract":"In this paper, the bearing-only formation control problem of multi-agent systems is addressed. The main contributions of the paper are twofold: (1) The local maximal clique graph instead of the global infinitesimal bearing rigidity graph is used to describe the formation configuration; (2) The proposed formation control law is globally stable. To be more specific, by considering the inter-agent communication topology satisfies the maximal clique graph condition, a cost function is designed based on the target formation. Next, the rotation bias of the final formation and the target formation are analyzed. Based on the negative gradient of the cost function, a globally stable distributed controller that only depends on the inter-bearing measurements is proposed and global convergence result and analysis are given. An illustrative example demonstrates the effectiveness and efficiency of the proposed control law.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the bearing-only formation control problem of multi-agent systems is addressed. The main contributions of the paper are twofold: (1) The local maximal clique graph instead of the global infinitesimal bearing rigidity graph is used to describe the formation configuration; (2) The proposed formation control law is globally stable. To be more specific, by considering the inter-agent communication topology satisfies the maximal clique graph condition, a cost function is designed based on the target formation. Next, the rotation bias of the final formation and the target formation are analyzed. Based on the negative gradient of the cost function, a globally stable distributed controller that only depends on the inter-bearing measurements is proposed and global convergence result and analysis are given. An illustrative example demonstrates the effectiveness and efficiency of the proposed control law.