A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical Interpretation

Wenlin Dai, S. Athanasiadis, T. Mrkvička
{"title":"A New Functional Clustering Method with Combined Dissimilarity Sources and Graphical Interpretation","authors":"Wenlin Dai, S. Athanasiadis, T. Mrkvička","doi":"10.5772/intechopen.100124","DOIUrl":null,"url":null,"abstract":"Clustering is an essential task in functional data analysis. In this study, we propose a framework for a clustering procedure based on functional rankings or depth. Our methods naturally combine various types of between-cluster variation equally, which caters to various discriminative sources of functional data; for example, they combine raw data with transformed data or various components of multivariate functional data with their covariance. Our methods also enhance the clustering results with a visualization tool that allows intrinsic graphical interpretation. Finally, our methods are model-free and nonparametric and hence are robust to heavy-tailed distribution or potential outliers. The implementation and performance of the proposed methods are illustrated with a simulation study and applied to three real-world applications.","PeriodicalId":127371,"journal":{"name":"Computational Statistics [Working Title]","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Clustering is an essential task in functional data analysis. In this study, we propose a framework for a clustering procedure based on functional rankings or depth. Our methods naturally combine various types of between-cluster variation equally, which caters to various discriminative sources of functional data; for example, they combine raw data with transformed data or various components of multivariate functional data with their covariance. Our methods also enhance the clustering results with a visualization tool that allows intrinsic graphical interpretation. Finally, our methods are model-free and nonparametric and hence are robust to heavy-tailed distribution or potential outliers. The implementation and performance of the proposed methods are illustrated with a simulation study and applied to three real-world applications.
一种结合不同源和图形解释的功能聚类新方法
聚类是功能数据分析中的一项重要任务。在这项研究中,我们提出了一个基于功能排名或深度的聚类过程框架。我们的方法自然地将各种类型的聚类间变异平等地结合起来,这迎合了功能数据的各种判别来源;例如,它们将原始数据与转换后的数据或多变量函数数据的各种组成部分及其协方差结合起来。我们的方法还通过一个可视化工具增强了聚类结果,该工具允许内在的图形解释。最后,我们的方法是无模型和非参数的,因此对重尾分布或潜在的异常值具有鲁棒性。通过仿真研究说明了所提出方法的实现和性能,并应用于三个实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信