Speed control of PMSM by hybrid genetic Artificial Bee Colony Algorithm

R. K. Jatoth, A. Rajasekhar
{"title":"Speed control of PMSM by hybrid genetic Artificial Bee Colony Algorithm","authors":"R. K. Jatoth, A. Rajasekhar","doi":"10.1109/ICCCCT.2010.5670559","DOIUrl":null,"url":null,"abstract":"Swarm Intelligence is the one of the most efficient and emergent techniques for global optimization. Artificial Bee Colony Algorithm (ABCA) is one of the new swarm intelligent population-based meta-heuristic approaches, inspired by foraging behavior of bees for function optimization. To enhance the efficiency of ABCA optimizer this paper proposes a novel hybrid approach involving genetic algorithms (GA) and Artificial Bee colony (ABC) algorithms. The proposed method is used for tuning Proportional Integral (PI) speed controller in a vector-controlled Permanent Magnet Synchronous Motor (PMSM) Drive. In this application our tuning method focuses on minimizing the Integral Time Absolute Error (ITAE) criterion. Simulation results and as well as comparisons with other methods like conventional Gradient descent method, Genetic algorithm, and Artificial Bee Colony methods shows the effectiveness of hybrid approach. Simulations are carried out using Industrial standard MATLAB/SIMULINK.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Swarm Intelligence is the one of the most efficient and emergent techniques for global optimization. Artificial Bee Colony Algorithm (ABCA) is one of the new swarm intelligent population-based meta-heuristic approaches, inspired by foraging behavior of bees for function optimization. To enhance the efficiency of ABCA optimizer this paper proposes a novel hybrid approach involving genetic algorithms (GA) and Artificial Bee colony (ABC) algorithms. The proposed method is used for tuning Proportional Integral (PI) speed controller in a vector-controlled Permanent Magnet Synchronous Motor (PMSM) Drive. In this application our tuning method focuses on minimizing the Integral Time Absolute Error (ITAE) criterion. Simulation results and as well as comparisons with other methods like conventional Gradient descent method, Genetic algorithm, and Artificial Bee Colony methods shows the effectiveness of hybrid approach. Simulations are carried out using Industrial standard MATLAB/SIMULINK.
基于混合遗传人工蜂群算法的永磁同步电机速度控制
群体智能是最有效的全局优化技术之一。人工蜂群算法(Artificial Bee Colony Algorithm, ABCA)是一种基于蜂群智能种群的元启发式算法,其灵感来自于蜜蜂觅食行为的优化。为了提高ABCA优化器的效率,本文提出了一种将遗传算法(GA)与人工蜂群算法(ABC)相结合的混合优化方法。将该方法用于矢量控制永磁同步电机(PMSM)驱动器中比例积分(PI)速度控制器的整定。在这个应用中,我们的调谐方法侧重于最小化积分时间绝对误差(ITAE)准则。仿真结果以及与传统梯度下降法、遗传算法、人工蜂群法等方法的比较表明了混合方法的有效性。采用工业标准的MATLAB/SIMULINK进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信