LiPS: A cost-efficient data and task co-scheduler for MapReduce

M. Ehsan, Yao Chen, Hui Kang, R. Sion, Jennifer L. Wong
{"title":"LiPS: A cost-efficient data and task co-scheduler for MapReduce","authors":"M. Ehsan, Yao Chen, Hui Kang, R. Sion, Jennifer L. Wong","doi":"10.1109/HiPC.2013.6799103","DOIUrl":null,"url":null,"abstract":"We introduce LiPS, a new cost-efficient data and task co-scheduler for MapReduce in a cloud environment. By using linear programming to simultaneously co-schedule data and tasks, LiPS helps to achieve minimized dollar cost globally. We evaluated LiPS both analytically and on Amazon EC2 in order to measure actual dollar charges. The results were significant; LiPS saved 62-81% of the dollar costs when compared with the Hadoop default scheduler and the delay scheduler, while also allowing users to fine-tune the cost-performance tradeoff.","PeriodicalId":206307,"journal":{"name":"20th Annual International Conference on High Performance Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"20th Annual International Conference on High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2013.6799103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We introduce LiPS, a new cost-efficient data and task co-scheduler for MapReduce in a cloud environment. By using linear programming to simultaneously co-schedule data and tasks, LiPS helps to achieve minimized dollar cost globally. We evaluated LiPS both analytically and on Amazon EC2 in order to measure actual dollar charges. The results were significant; LiPS saved 62-81% of the dollar costs when compared with the Hadoop default scheduler and the delay scheduler, while also allowing users to fine-tune the cost-performance tradeoff.
LiPS:用于MapReduce的经济高效的数据和任务协同调度程序
我们介绍了LiPS,这是一种新的云环境中用于MapReduce的经济高效的数据和任务协同调度程序。通过使用线性规划来同时调度数据和任务,lip有助于实现全局成本最小化。我们对lip进行了分析性评估,并在Amazon EC2上进行了评估,以衡量实际的费用。结果是显著的;与Hadoop默认调度器和延迟调度器相比,LiPS节省了62-81%的成本,同时还允许用户微调成本-性能权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信