Handling uncertainty in cloud resource management using fuzzy Bayesian networks

F. Ramezani, M. Naderpour, Jie Lu
{"title":"Handling uncertainty in cloud resource management using fuzzy Bayesian networks","authors":"F. Ramezani, M. Naderpour, Jie Lu","doi":"10.1109/FUZZ-IEEE.2015.7337979","DOIUrl":null,"url":null,"abstract":"The success of cloud services depends critically on the effective management of virtualized resources. This paper aims to design and implement a decision support method to handle uncertainties in resource management from the cloud provider perspective that enables underlying complexity, automates resource provisioning and controls client-perceived quality of service. The paper includes a probabilistic decision making module that relies upon a fuzzy Bayesian network to determine the current situation status of a cloud infrastructure, including physical and virtual machines, and predicts the near future state, that will help the hypervisor to migrate or expand the VMs to reduce execution time and meet quality of service requirements. First, the framework of resource management is presented. Second, the decision making module is developed. Lastly, a series of experiments to investigate the performance of the proposed module is implemented. Experiments reveal the efficiency of the module prototype.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The success of cloud services depends critically on the effective management of virtualized resources. This paper aims to design and implement a decision support method to handle uncertainties in resource management from the cloud provider perspective that enables underlying complexity, automates resource provisioning and controls client-perceived quality of service. The paper includes a probabilistic decision making module that relies upon a fuzzy Bayesian network to determine the current situation status of a cloud infrastructure, including physical and virtual machines, and predicts the near future state, that will help the hypervisor to migrate or expand the VMs to reduce execution time and meet quality of service requirements. First, the framework of resource management is presented. Second, the decision making module is developed. Lastly, a series of experiments to investigate the performance of the proposed module is implemented. Experiments reveal the efficiency of the module prototype.
利用模糊贝叶斯网络处理云资源管理中的不确定性
云服务的成功在很大程度上取决于对虚拟资源的有效管理。本文旨在设计并实现一种决策支持方法,从云提供商的角度处理资源管理中的不确定性,从而实现底层复杂性、自动化资源配置和控制客户感知的服务质量。本文包括一个概率决策模块,该模块依赖于模糊贝叶斯网络来确定云基础设施(包括物理机和虚拟机)的当前状态,并预测近期状态,这将有助于管理程序迁移或扩展虚拟机,以减少执行时间并满足服务质量要求。首先,提出了资源管理的框架。其次,开发了决策模块。最后,进行了一系列的实验来验证该模块的性能。实验验证了该模块原型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信