Design of Active Force Controller for Off-Road Seat Suspension equipped to MR Damper

Mona Tahmasebi, M. Gohari, M. Mobarakabadi
{"title":"Design of Active Force Controller for Off-Road Seat Suspension equipped to MR Damper","authors":"Mona Tahmasebi, M. Gohari, M. Mobarakabadi","doi":"10.52547/masm.1.2.175","DOIUrl":null,"url":null,"abstract":"by electromagnetic flux. It is called smart fluid due to having controllable parameters such as damping ratio by electricity variations. Thus, suspension can dampen oscillation by low electricity current efficiently. The current paper introduces a novel active force control (AFC) equipped with an iterative learning estimator for seat suspension via MR damper. Results of simulations show that it can cancel vibration perfectly. The suspension was coupled to the human body vibration model, and the driver vibration results have been obtained. It is important to note that active force control can also be used to eliminate high-velocity disturbances. Since the vibrations that occur in the car have a high rate of change, the results indicated that active force control equipped with an iterative learning estimator system can be effective in reducing the transmission vibration to the driver so that the first and second vibration peaks was reduced by about 60%.","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanic of Advanced and Smart Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/masm.1.2.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

by electromagnetic flux. It is called smart fluid due to having controllable parameters such as damping ratio by electricity variations. Thus, suspension can dampen oscillation by low electricity current efficiently. The current paper introduces a novel active force control (AFC) equipped with an iterative learning estimator for seat suspension via MR damper. Results of simulations show that it can cancel vibration perfectly. The suspension was coupled to the human body vibration model, and the driver vibration results have been obtained. It is important to note that active force control can also be used to eliminate high-velocity disturbances. Since the vibrations that occur in the car have a high rate of change, the results indicated that active force control equipped with an iterative learning estimator system can be effective in reducing the transmission vibration to the driver so that the first and second vibration peaks was reduced by about 60%.
基于MR阻尼器的越野座椅悬架主动力控制器设计
通过电磁通量。由于其阻尼比等参数可通过电的变化而可控,因此被称为智能流体。因此,悬架可以有效地通过低电流抑制振荡。本文介绍了一种基于迭代学习估计器的基于磁流变阻尼器的座椅悬架主动控制方法。仿真结果表明,该方法具有较好的消振效果。将悬架与人体振动模型耦合,得到了驾驶员的振动结果。重要的是要注意,主动力控制也可以用来消除高速扰动。由于汽车振动具有较高的变化率,结果表明,采用迭代学习估计系统的主动力控制可以有效地降低传递给驾驶员的振动,使第一和第二振动峰值降低约60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信