On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles

K. Fahem, D. Chariag, L. Sbita
{"title":"On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles","authors":"K. Fahem, D. Chariag, L. Sbita","doi":"10.1109/GECS.2017.8066189","DOIUrl":null,"url":null,"abstract":"Over the last years, Electric Vehicles (EV) have gained a growing interest as an alternative option for Internal Combustion Engine driven vehicles due to the increasing concern of global warming issue. Since the battery is the key component in the development of electric vehicles technology, the battery charger is also indispensable for their emergence. Typically battery chargers are composed of two stages of conversion and they can be implemented inside (on-board) or outside (off-board) the vehicle. The on-board chargers are limited by size and weight thus they are restricted to low power (slow charging). So to achieve high power level (fast charging) several integration solutions with the existent drivetrain in the vehicle have been proposed. Battery chargers can support bidirectional power flow between the vehicle and the grid which introduces “Vehicle-to-Grid” technology. This paper presents an overview of on-board bidirectional battery chargers. Different topologies for both two-stage chargers and integrated chargers are reported and their operation principals are explained.","PeriodicalId":214657,"journal":{"name":"2017 International Conference on Green Energy Conversion Systems (GECS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Green Energy Conversion Systems (GECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GECS.2017.8066189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Over the last years, Electric Vehicles (EV) have gained a growing interest as an alternative option for Internal Combustion Engine driven vehicles due to the increasing concern of global warming issue. Since the battery is the key component in the development of electric vehicles technology, the battery charger is also indispensable for their emergence. Typically battery chargers are composed of two stages of conversion and they can be implemented inside (on-board) or outside (off-board) the vehicle. The on-board chargers are limited by size and weight thus they are restricted to low power (slow charging). So to achieve high power level (fast charging) several integration solutions with the existent drivetrain in the vehicle have been proposed. Battery chargers can support bidirectional power flow between the vehicle and the grid which introduces “Vehicle-to-Grid” technology. This paper presents an overview of on-board bidirectional battery chargers. Different topologies for both two-stage chargers and integrated chargers are reported and their operation principals are explained.
插电式混合动力汽车车载双向电池充电器拓扑结构
在过去的几年里,由于全球变暖问题的日益关注,电动汽车(EV)作为内燃机驱动汽车的替代方案获得了越来越多的兴趣。由于电池是电动汽车技术发展的关键部件,因此电池充电器的出现也是必不可少的。通常,电池充电器由两个转换阶段组成,它们可以在车辆内部(车载)或外部(车载)实施。车载充电器受到尺寸和重量的限制,因此它们被限制在低功率(慢充电)。因此,为了实现高功率水平(快速充电),人们提出了几种与现有车辆动力传动系统集成的解决方案。电池充电器可以支持车辆和电网之间的双向电力流动,引入了“车到电网”技术。本文介绍了车载双向电池充电器的概况。报告了两级充电器和集成充电器的不同拓扑结构,并解释了它们的工作原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信