Categorifying Hecke algebras at prime roots of unity, part I

Ben Elias, You Qi
{"title":"Categorifying Hecke algebras at prime roots of unity, part I","authors":"Ben Elias, You Qi","doi":"10.1090/tran/8908","DOIUrl":null,"url":null,"abstract":"We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel. \nHere are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We equip the type A diagrammatic Hecke category with a special derivation, so that after specialization to characteristic p it becomes a p-dg category. We prove that the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. We conjecture that the $p$-dg Grothendieck group is isomorphic to the Iwahori-Hecke algebra, equipping it with a basis which may differ from both the Kazhdan-Lusztig basis and the p-canonical basis. More precise conjectures will be found in the sequel. Here are some other results contained in this paper. We provide an incomplete proof of the classification of all degree +2 derivations on the diagrammatic Hecke category, and a complete proof of the classification of those derivations for which the defining relations of the Hecke algebra are satisfied in the p-dg Grothendieck group. In particular, our special derivation is unique up to duality and equivalence. We prove that no such derivation exists in simply-laced types outside of finite and affine type A. We also examine a particular Bott-Samelson bimodule in type A_7, which is indecomposable in characteristic 2 but decomposable in all other characteristics. We prove that this Bott-Samelson bimodule admits no nontrivial fantastic filtrations in any characteristic, which is the analogue in the p-dg setting of being indecomposable.
在单位素根处对Hecke代数的分类,第1部分
我们给A型图解Hecke范畴赋予了一个特殊的导数,使它专门化到特征p后成为p-dg范畴。证明了在p-dg Grothendieck群中Hecke代数的定义关系是满足的。我们推测$p$-dg Grothendieck群与Iwahori-Hecke代数同构,并赋予它一个既不同于Kazhdan-Lusztig基又不同于p-正则基的基。更精确的猜想将在续集中出现。以下是本文中包含的其他一些结果。给出了图解Hecke范畴上所有+2次导的分类的不完全证明,以及p-dg Grothendieck群上满足Hecke代数定义关系的导的分类的完全证明。特别地,我们的特殊推导在对偶性和等价性方面是唯一的。我们证明了在有限仿射类型a之外的简单类型中不存在这样的推导。我们还研究了在类型A_7中的一个特殊的bot - samelson双模,它在特征2中是不可分解的,但在所有其他特征中都是可分解的。我们证明了这个bot - samelson双模在任何特性下都不允许有非平凡奇异过滤,这是p-dg不可分解情况下的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信