{"title":"GridBot: execution of bags of tasks in multiple grids","authors":"M. Silberstein, A. Sharov, D. Geiger, A. Schuster","doi":"10.1145/1654059.1654071","DOIUrl":null,"url":null,"abstract":"We present a holistic approach for efficient execution of bags-of-tasks (BOTs) on multiple grids, clusters, and volunteer computing grids virtualized as a single computing platform. The challenge is twofold: to assemble this compound environment and to employ it for execution of a mixture of throughput- and performance-oriented BOTs, with a dozen to millions of tasks each. Our generic mechanism allows per BOT specification of dynamic arbitrary scheduling and replication policies as a function of the system state, BOT execution state, and BOT priority. We implement our mechanism in the GridBot system and demonstrate its capabilities in a production setup. GridBot has executed hundreds of BOTs with over 9 million jobs during three months alone; these have been invoked on 25,000 hosts, 15,000 from the Superlink@Technion community grid and the rest from the Technion campus grid, local clusters, the Open Science Grid, EGEE, and the UW Madison pool.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
Abstract
We present a holistic approach for efficient execution of bags-of-tasks (BOTs) on multiple grids, clusters, and volunteer computing grids virtualized as a single computing platform. The challenge is twofold: to assemble this compound environment and to employ it for execution of a mixture of throughput- and performance-oriented BOTs, with a dozen to millions of tasks each. Our generic mechanism allows per BOT specification of dynamic arbitrary scheduling and replication policies as a function of the system state, BOT execution state, and BOT priority. We implement our mechanism in the GridBot system and demonstrate its capabilities in a production setup. GridBot has executed hundreds of BOTs with over 9 million jobs during three months alone; these have been invoked on 25,000 hosts, 15,000 from the Superlink@Technion community grid and the rest from the Technion campus grid, local clusters, the Open Science Grid, EGEE, and the UW Madison pool.