An efficient RTO scheme for the optimal operation of chemical processes under uncertainty

Reinaldo Hernández, Monika Bučková, S. Engell
{"title":"An efficient RTO scheme for the optimal operation of chemical processes under uncertainty","authors":"Reinaldo Hernández, Monika Bučková, S. Engell","doi":"10.1109/PC.2017.7976241","DOIUrl":null,"url":null,"abstract":"In this contribution, an efficient Real-time Optimization (RTO) scheme for the optimal operation of chemical processes under uncertainty is proposed. This work builds on two recently published iterative robust optimization methodologies: Modifier Adaptation with Quadratic Approximation (MAWQA) and Directional Modifier Adaptation (DMA) and proposes a unified framework where the benefits of both methods are combined. As a consequence, fast convergence to the true plant optimum is achieved despite the presence of plant-model mismatch. The methodology is illustrated by simulation studies of a novel transition metal complex catalyzed process.","PeriodicalId":377619,"journal":{"name":"2017 21st International Conference on Process Control (PC)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference on Process Control (PC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PC.2017.7976241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this contribution, an efficient Real-time Optimization (RTO) scheme for the optimal operation of chemical processes under uncertainty is proposed. This work builds on two recently published iterative robust optimization methodologies: Modifier Adaptation with Quadratic Approximation (MAWQA) and Directional Modifier Adaptation (DMA) and proposes a unified framework where the benefits of both methods are combined. As a consequence, fast convergence to the true plant optimum is achieved despite the presence of plant-model mismatch. The methodology is illustrated by simulation studies of a novel transition metal complex catalyzed process.
不确定条件下化工过程优化操作的一种有效的RTO方法
在这篇贡献中,提出了一种有效的实时优化(RTO)方案,用于不确定条件下化工过程的优化操作。这项工作建立在最近发表的两种迭代鲁棒优化方法的基础上:二次逼近修饰符自适应(MAWQA)和定向修饰符自适应(DMA),并提出了一个统一的框架,其中结合了两种方法的优点。因此,尽管存在植物-模型不匹配,但仍能快速收敛到真正的植物最优。通过一种新型过渡金属配合物催化过程的模拟研究说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信