Data analysis to uncover intruder attacks using data mining techniques

S. Nazir, M. Ghazanfar, Naif R. Aljohani, M. A. Azam, Jalal S. Alowibdi
{"title":"Data analysis to uncover intruder attacks using data mining techniques","authors":"S. Nazir, M. Ghazanfar, Naif R. Aljohani, M. A. Azam, Jalal S. Alowibdi","doi":"10.1109/ICOICT.2017.8074683","DOIUrl":null,"url":null,"abstract":"Radicalism is becoming an increasingly potential concern. Intruder groups are using handful tactics and radicalism has disparaging effects, particularly in Gulf and Pakistan region. Forecasting the pattern of attacks is a complex task. This research paper presents new insights on intruder groups and targets using data mining algorithms. We propose a framework, which uses historical data to train machine-learning classifiers and can predict intruder groups and attack types based on selected features. We analyzed that the major victims of intruder groups would be citizen and property, government, police, and military sectors. We figured out that J48 and IBK learning algorithms perform consistently well under various experimental settings.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Radicalism is becoming an increasingly potential concern. Intruder groups are using handful tactics and radicalism has disparaging effects, particularly in Gulf and Pakistan region. Forecasting the pattern of attacks is a complex task. This research paper presents new insights on intruder groups and targets using data mining algorithms. We propose a framework, which uses historical data to train machine-learning classifiers and can predict intruder groups and attack types based on selected features. We analyzed that the major victims of intruder groups would be citizen and property, government, police, and military sectors. We figured out that J48 and IBK learning algorithms perform consistently well under various experimental settings.
使用数据挖掘技术进行数据分析,以发现入侵者的攻击
激进主义正日益成为潜在的担忧。入侵者组织正在使用一些策略,激进主义具有贬损性的影响,特别是在海湾和巴基斯坦地区。预测攻击模式是一项复杂的任务。本文提出了使用数据挖掘算法对入侵者群体和目标的新见解。我们提出了一个框架,该框架使用历史数据来训练机器学习分类器,并可以根据选择的特征预测入侵者组和攻击类型。我们分析了入侵组织的主要受害者将是公民和财产、政府、警察和军事部门。我们发现J48和IBK学习算法在各种实验设置下表现一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信