{"title":"Ambipolar double-gate FETs for the design of compact logic structures","authors":"K. Jabeur, I. O’Connor, N. Yakymets, S. L. Beux","doi":"10.1145/2206781.2206785","DOIUrl":null,"url":null,"abstract":"We present in this paper a circuit design approach to achieve compact logic circuits with ambipolar double-gate devices, using the in-field controllability of such devices. The approach is demonstrated for complementary static logic design style. We apply this approach in a case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology and show that, with respect to conventional CMOS-like static logic structures and for comparable power consumption, time delay and integration density can both be improved by a factor of 1.5x and 2x, respectively. Compared with a predictive model for 16nm CMOS technology, the gates built according to the design approach described in this work and based on DG-CNTFET offer a gain of 30% concerning Power-Delay-Product (PDP).","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2206781.2206785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present in this paper a circuit design approach to achieve compact logic circuits with ambipolar double-gate devices, using the in-field controllability of such devices. The approach is demonstrated for complementary static logic design style. We apply this approach in a case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology and show that, with respect to conventional CMOS-like static logic structures and for comparable power consumption, time delay and integration density can both be improved by a factor of 1.5x and 2x, respectively. Compared with a predictive model for 16nm CMOS technology, the gates built according to the design approach described in this work and based on DG-CNTFET offer a gain of 30% concerning Power-Delay-Product (PDP).