{"title":"Approximate bivariate factorization: a geometric viewpoint","authors":"A. Galligo, M. V. Hoeij","doi":"10.1145/1277500.1277502","DOIUrl":null,"url":null,"abstract":"We briefly present and analyze, from a geometric viewpoint, strategies for designing algorithms to factor bivariate approximate polynomials in C[x; y].\n Given a composite polynomial, stably square-free, satisfying a genericity hypothesis, we describe the effect of a perturbation on the roots of its discriminant with respect to one variable, and the perturbation of the corresponding monodromy action on a smooth fiber.\n A novel geometric approach is presented, based on guided projection in the parameter space and continuation method above randomly chosen loops, to reconstruct from a perturbed polynomial a nearby composite polynomial and its irreducible factors. An algorithm and its ingredients are described.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We briefly present and analyze, from a geometric viewpoint, strategies for designing algorithms to factor bivariate approximate polynomials in C[x; y].
Given a composite polynomial, stably square-free, satisfying a genericity hypothesis, we describe the effect of a perturbation on the roots of its discriminant with respect to one variable, and the perturbation of the corresponding monodromy action on a smooth fiber.
A novel geometric approach is presented, based on guided projection in the parameter space and continuation method above randomly chosen loops, to reconstruct from a perturbed polynomial a nearby composite polynomial and its irreducible factors. An algorithm and its ingredients are described.