Recognition algorithm for huge number of very similar objects

Lingfeng Kong, Qingxiang Wu
{"title":"Recognition algorithm for huge number of very similar objects","authors":"Lingfeng Kong, Qingxiang Wu","doi":"10.1109/CISP-BMEI.2016.7852768","DOIUrl":null,"url":null,"abstract":"In order to identify a large number of very similar objects, a novel recognition approach is proposed by mean of combination of two dynamic grouping algorithms, the visual processing mechanism, PCA and multi-pathway SVM. The samples have been segmented to appropriate groups by grouping features, and then features with rotation invariance and translation invariance of each group are extracted. Finally, the features' reduced by PCA are put into the SVM to build classification models. The experimental results show that the proposed algorithms in this paper error rates are obviously less than the algorithms in which samples not be grouped and put the classification features into SVM to build a classification model directly.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to identify a large number of very similar objects, a novel recognition approach is proposed by mean of combination of two dynamic grouping algorithms, the visual processing mechanism, PCA and multi-pathway SVM. The samples have been segmented to appropriate groups by grouping features, and then features with rotation invariance and translation invariance of each group are extracted. Finally, the features' reduced by PCA are put into the SVM to build classification models. The experimental results show that the proposed algorithms in this paper error rates are obviously less than the algorithms in which samples not be grouped and put the classification features into SVM to build a classification model directly.
大量非常相似物体的识别算法
为了识别大量非常相似的目标,将两种动态分组算法、视觉处理机制、主成分分析和多路径支持向量机相结合,提出了一种新的识别方法。通过特征分组对样本进行分类,提取每组样本的旋转不变性和平移不变性特征。最后,将PCA约简后的特征输入到SVM中构建分类模型。实验结果表明,本文提出的算法的错误率明显低于不分组并将分类特征直接放入SVM中构建分类模型的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信