Model Predictive Control of Linear Systems with Unknown Parameters

Chenjing Meng, Huiping Li
{"title":"Model Predictive Control of Linear Systems with Unknown Parameters","authors":"Chenjing Meng, Huiping Li","doi":"10.1109/IAI50351.2020.9262166","DOIUrl":null,"url":null,"abstract":"This paper studies the model predictive control problem (MPC) of linear systems with unknown parameters both in system models and measurement models. The method that combines the estimation of system parameters and states with MPC is proposed, where the reinforcement learning (RL) is used to learn the optimal control strategies. Its characteristics are that the control and estimate can proceed simultaneously. Simulation studies verify that the designed algorithm can converge to the optimal linear feedback and the parameters converge as well.","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the model predictive control problem (MPC) of linear systems with unknown parameters both in system models and measurement models. The method that combines the estimation of system parameters and states with MPC is proposed, where the reinforcement learning (RL) is used to learn the optimal control strategies. Its characteristics are that the control and estimate can proceed simultaneously. Simulation studies verify that the designed algorithm can converge to the optimal linear feedback and the parameters converge as well.
未知参数线性系统的模型预测控制
本文从系统模型和测量模型两个方面研究了未知参数线性系统的模型预测控制问题。提出了一种将系统参数和状态估计与MPC相结合的方法,其中采用强化学习(RL)学习最优控制策略。其特点是控制和估计可以同时进行。仿真研究表明,所设计的算法收敛于最优线性反馈,参数收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信