Improved Localization Accuracy Using Machine Learning: Predicting and Refining RSS Measurements

C. Nguyen, Orestis Georgiou, Vorapong Suppakitpaisarn
{"title":"Improved Localization Accuracy Using Machine Learning: Predicting and Refining RSS Measurements","authors":"C. Nguyen, Orestis Georgiou, Vorapong Suppakitpaisarn","doi":"10.1109/GLOCOMW.2018.8644270","DOIUrl":null,"url":null,"abstract":"Wireless localization methods are often subject to errors due to radio signal fluctuations that are used to estimate inter-device separation distances. We propose a novel method called MLRefine to counter these effects by refining RSS measurement data to obtain more accurate values that can enhance ranging and localization accuracies. MLRefine uses machine learning methods to model the relationship between accurate values and features extracted from in silico RSS values. MLRefine then applies the trained model to features extracted from real RSS measurement values to return a predicted set of refined RSS values. The refined RSS values are shown through computer simulations and real experiments to improve localization accuracy.","PeriodicalId":348924,"journal":{"name":"2018 IEEE Globecom Workshops (GC Wkshps)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2018.8644270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Wireless localization methods are often subject to errors due to radio signal fluctuations that are used to estimate inter-device separation distances. We propose a novel method called MLRefine to counter these effects by refining RSS measurement data to obtain more accurate values that can enhance ranging and localization accuracies. MLRefine uses machine learning methods to model the relationship between accurate values and features extracted from in silico RSS values. MLRefine then applies the trained model to features extracted from real RSS measurement values to return a predicted set of refined RSS values. The refined RSS values are shown through computer simulations and real experiments to improve localization accuracy.
使用机器学习提高定位精度:预测和改进RSS测量
由于用于估计设备间分离距离的无线电信号波动,无线定位方法经常受到误差的影响。我们提出了一种名为MLRefine的新方法,通过改进RSS测量数据来获得更精确的值,从而提高测距和定位精度,从而抵消这些影响。MLRefine使用机器学习方法对精确值和从计算机RSS值中提取的特征之间的关系进行建模。MLRefine然后将训练好的模型应用于从实际RSS测量值中提取的特征,以返回一组预测的精细化RSS值。通过计算机模拟和实际实验,给出了改进后的RSS值,以提高定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信