Work-in-Progress: Scheduler for Collaborated FPGA-GPU-CPU Based on Intermediate Language

Na Hu, Chao Wang, Xuehai Zhou, Xi Li
{"title":"Work-in-Progress: Scheduler for Collaborated FPGA-GPU-CPU Based on Intermediate Language","authors":"Na Hu, Chao Wang, Xuehai Zhou, Xi Li","doi":"10.1109/CODES-ISSS55005.2022.00008","DOIUrl":null,"url":null,"abstract":"FPGA-GPU-CPU collaboration compromise high performance and low cost in modern computing systems. However, the large mapping space between modules and heterogeneous processors brings complexity to the scheduling algorithm. This paper proposes a uniform-pipeline-based real-time oriented scheduling algorithm and a servant execution-flow model (SEFM) optimized for this scheduler. SEFM at runtime generates the target code from the intermediate language (IL) and scheduler-controlled parameters. The algorithms such as contrast stretching, etc., are accelerated by 1.4-2.7×, 1.9-3.8×, 2.7-10.5× respectively on CPU, GPU, and FPGA over OpenCV baseline. A case study of 3D waveform oscilloscope using scheduling solution on collaborated processors achieves 1.5× resource utilization than the pure FPGA.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

FPGA-GPU-CPU collaboration compromise high performance and low cost in modern computing systems. However, the large mapping space between modules and heterogeneous processors brings complexity to the scheduling algorithm. This paper proposes a uniform-pipeline-based real-time oriented scheduling algorithm and a servant execution-flow model (SEFM) optimized for this scheduler. SEFM at runtime generates the target code from the intermediate language (IL) and scheduler-controlled parameters. The algorithms such as contrast stretching, etc., are accelerated by 1.4-2.7×, 1.9-3.8×, 2.7-10.5× respectively on CPU, GPU, and FPGA over OpenCV baseline. A case study of 3D waveform oscilloscope using scheduling solution on collaborated processors achieves 1.5× resource utilization than the pure FPGA.
基于中间语言的FPGA-GPU-CPU协同调度
FPGA-GPU-CPU协作在现代计算系统中牺牲了高性能和低成本。然而,模块和异构处理器之间的巨大映射空间给调度算法带来了复杂性。本文提出了一种基于统一流水线的面向实时调度算法,并针对该算法提出了一种优化的服务型执行流模型(SEFM)。SEFM在运行时从中间语言(IL)和调度器控制的参数生成目标代码。对比拉伸等算法在CPU、GPU和FPGA上分别在OpenCV基线上加速1.4 ~ 2.7倍、1.9 ~ 3.8倍、2.7 ~ 10.5倍。以采用协同处理器调度方案的三维波形示波器为例,其资源利用率是纯FPGA的1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信