Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix

G. Labahn, Vincent Neiger, Thi Xuan Vu, Wei Zhou
{"title":"Rank-Sensitive Computation of the Rank Profile of a Polynomial Matrix","authors":"G. Labahn, Vincent Neiger, Thi Xuan Vu, Wei Zhou","doi":"10.1145/3476446.3535495","DOIUrl":null,"url":null,"abstract":"Consider a matrix F ε K [x]^mxn of univariate polynomials over a field K. We study the problem of computing the column rank profile of F. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of F with a rank-sensitive complexity of O~ (rw-2n(m+d)) operations in K. Here, D is the sum of row degrees of F, w is the exponent of matrix multiplication, and O~ (.) hides logarithmic factors.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider a matrix F ε K [x]^mxn of univariate polynomials over a field K. We study the problem of computing the column rank profile of F. To this end we first give an algorithm which improves the minimal kernel basis algorithm of Zhou, Labahn, and Storjohann (Proceedings ISSAC 2012). We then provide a second algorithm which computes the column rank profile of F with a rank-sensitive complexity of O~ (rw-2n(m+d)) operations in K. Here, D is the sum of row degrees of F, w is the exponent of matrix multiplication, and O~ (.) hides logarithmic factors.
多项式矩阵秩轮廓的秩敏感计算
考虑域K上的单变量多项式的矩阵F ε K [x]^mxn。我们研究了F的列秩轮廓的计算问题。为此,我们首先给出了一种算法,该算法改进了Zhou, Labahn和Storjohann的最小核基算法(Proceedings ISSAC 2012)。然后,我们提供了第二种算法,该算法计算F的列秩轮廓,其秩敏感复杂度为k中的O~ (rw-2n(m+d))次操作。这里,d是F的行度和,w是矩阵乘法的指数,O~(.)隐藏对数因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信