X. Jaureguibeitia, U. Irusta, E. Aramendi, He Wang, A. Idris
{"title":"An Impedance-based Algorithm to Detect Ventilations During Cardiopulmonary Resuscitation","authors":"X. Jaureguibeitia, U. Irusta, E. Aramendi, He Wang, A. Idris","doi":"10.22489/CinC.2020.325","DOIUrl":null,"url":null,"abstract":"Cardiopulmonary resuscitation (CPR) is a core therapy to treat out-of-hospital cardiac arrest (OHCA). Thoracic impedance (TI) can be used to assess ventilations during CPR, but the signal is also affected by chest compression (CC) artifacts. This study presents a method for TI-based ventilation detection during concurrent manual CCs. Data from 152 OHCA patients were analyzed. A total of 423 TI segments of at least 60 s during ongoing CCs were extracted. True ventilations were annotated using the capnogram. The final dataset comprised 1210 min of TI recordings and 9665 ground truth ventilations. A three-stage detection algorithm was developed. First, the TI signal was filtered to obtain ventilation waveforms, including a least mean squares filter to remove artifacts due to CCs. Potential ventilations were then identified with a heuristic detector and characterized by a set of 16 features. These were finally fed to a random forest classifier to discriminate between true ventilations and false positives. Patients were split into 100 distinct training (70%) and test (30%) partitions. The median (interquartile range) sensitivity, PPV and F-score were 83.9 (70.2-91.2) %, 86.1 (75.0-93.3) % and 84.3 (72.1-91.4) %. Our method would allow feedback on ventilation rates as well as surrogate measures of insufflated air volume during CPR.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Cardiopulmonary resuscitation (CPR) is a core therapy to treat out-of-hospital cardiac arrest (OHCA). Thoracic impedance (TI) can be used to assess ventilations during CPR, but the signal is also affected by chest compression (CC) artifacts. This study presents a method for TI-based ventilation detection during concurrent manual CCs. Data from 152 OHCA patients were analyzed. A total of 423 TI segments of at least 60 s during ongoing CCs were extracted. True ventilations were annotated using the capnogram. The final dataset comprised 1210 min of TI recordings and 9665 ground truth ventilations. A three-stage detection algorithm was developed. First, the TI signal was filtered to obtain ventilation waveforms, including a least mean squares filter to remove artifacts due to CCs. Potential ventilations were then identified with a heuristic detector and characterized by a set of 16 features. These were finally fed to a random forest classifier to discriminate between true ventilations and false positives. Patients were split into 100 distinct training (70%) and test (30%) partitions. The median (interquartile range) sensitivity, PPV and F-score were 83.9 (70.2-91.2) %, 86.1 (75.0-93.3) % and 84.3 (72.1-91.4) %. Our method would allow feedback on ventilation rates as well as surrogate measures of insufflated air volume during CPR.