Analysis of Stock Price Flow Based on Social Media Sentiments

Nishant Suman, P. Gupta, Pankaj Sharma
{"title":"Analysis of Stock Price Flow Based on Social Media Sentiments","authors":"Nishant Suman, P. Gupta, Pankaj Sharma","doi":"10.1109/ICNGCIS.2017.34","DOIUrl":null,"url":null,"abstract":"Prediction of mood uses the sentiment word lists obtained in various sources where general state of mood can be found using such word list or emotion tokens. With the number of messages posted on Stock Twits, it is believed that the general state of mood can be predicted with certain statistical significance. This paper explores the relationship between Stock Twits messages relationship with stock market movement, and how well, sentiment extracted from these feeds can be related to the shifts in stock prices. For this case we chose Apple Inc to perform the analysis, and estimate its accuracy.","PeriodicalId":314733,"journal":{"name":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Next Generation Computing and Information Systems (ICNGCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNGCIS.2017.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Prediction of mood uses the sentiment word lists obtained in various sources where general state of mood can be found using such word list or emotion tokens. With the number of messages posted on Stock Twits, it is believed that the general state of mood can be predicted with certain statistical significance. This paper explores the relationship between Stock Twits messages relationship with stock market movement, and how well, sentiment extracted from these feeds can be related to the shifts in stock prices. For this case we chose Apple Inc to perform the analysis, and estimate its accuracy.
基于社交媒体情绪的股票价格流动分析
情绪预测使用从各种来源获得的情绪词表,其中可以使用这些词表或情绪标记找到情绪的一般状态。根据Stock Twits上发布的消息数量,可以预测总体情绪状态,具有一定的统计意义。本文探讨了股票tweet信息与股票市场运动之间的关系,以及从这些提要中提取的情绪与股票价格变化之间的关系。对于这个案例,我们选择苹果公司进行分析,并估计其准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信