Ashwin K. Vijayan, Sreejish Sreenivasan, D. Nair, M. Reddy
{"title":"Drift compensation using bulk feedback in a neural recording system based on open-gate FET","authors":"Ashwin K. Vijayan, Sreejish Sreenivasan, D. Nair, M. Reddy","doi":"10.1109/ICSSA.2015.7322518","DOIUrl":null,"url":null,"abstract":"The shift from micro-electrode array based neural recording system to an open-gate FET based system, in which direct electrical interaction with a neuron in a nanostructure circuit offers significant advantages. However, the equivalent capacitance (Ceq) of the FET sensor undergoes a slow, monotonic change due to hydration of the insulator layers leading to a threshold voltage drift which ultimately manifest as a drift in the drain current. This paper presents a drift compensation technique for neural recording systems that use open-gate FET sensors by employing feedback to the bulk of the FET. The efficiency of this technique has been validated by simulating a sensor system with practical drift parameters. While the current drift without a feedback was found to be more than 5% of the drain current before hydration, the simulation results show that the current drift is less than 0.042% when there is an active feedback. In general, this technique is applicable to other systems that use open-gate FET based sensors such as the ISFETs.","PeriodicalId":378414,"journal":{"name":"2015 International Conference on Smart Sensors and Application (ICSSA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Smart Sensors and Application (ICSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSA.2015.7322518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The shift from micro-electrode array based neural recording system to an open-gate FET based system, in which direct electrical interaction with a neuron in a nanostructure circuit offers significant advantages. However, the equivalent capacitance (Ceq) of the FET sensor undergoes a slow, monotonic change due to hydration of the insulator layers leading to a threshold voltage drift which ultimately manifest as a drift in the drain current. This paper presents a drift compensation technique for neural recording systems that use open-gate FET sensors by employing feedback to the bulk of the FET. The efficiency of this technique has been validated by simulating a sensor system with practical drift parameters. While the current drift without a feedback was found to be more than 5% of the drain current before hydration, the simulation results show that the current drift is less than 0.042% when there is an active feedback. In general, this technique is applicable to other systems that use open-gate FET based sensors such as the ISFETs.