Convergence Properties of Particle Filter Algorithm

Yanwen Qu, Yi Chen, Jing-yu Yang
{"title":"Convergence Properties of Particle Filter Algorithm","authors":"Yanwen Qu, Yi Chen, Jing-yu Yang","doi":"10.1109/CCPR.2008.14","DOIUrl":null,"url":null,"abstract":"The basic sampling importance resampling algorithm is the basic for improving particle filter methods which are widely utilized in optimal filtering problems. In our paper, we introduce a modified basic SIR algorithm and analyze the convergence property of the modified basic SIR algorithm. Furthermore, when the recursive time is finite and the forth-order moment of the interesting function w.r.t the posterior joint distribution of the extended state is exist, the sufficient condition for the basic particle filter estimation convergence almost surely to the optimal estimation is discussed.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The basic sampling importance resampling algorithm is the basic for improving particle filter methods which are widely utilized in optimal filtering problems. In our paper, we introduce a modified basic SIR algorithm and analyze the convergence property of the modified basic SIR algorithm. Furthermore, when the recursive time is finite and the forth-order moment of the interesting function w.r.t the posterior joint distribution of the extended state is exist, the sufficient condition for the basic particle filter estimation convergence almost surely to the optimal estimation is discussed.
粒子滤波算法的收敛性
基本采样重要性重采样算法是改进粒子滤波方法的基础,粒子滤波方法广泛应用于最优滤波问题。本文介绍了一种改进的基本SIR算法,并分析了改进的基本SIR算法的收敛性。进一步讨论了当递推时间有限且感兴趣函数的四阶矩w.r.t扩展状态的后验联合分布存在时,基本粒子滤波估计几乎肯定收敛到最优估计的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信