Black-Box Expectation-Maximization Algorithm for Estimating Latent States of High-Speed Vehicles

Yoon-Yeong Kim, Hyemi Kim, Wonsung Lee, Han-Lim Choi, Il-Chul Moon
{"title":"Black-Box Expectation-Maximization Algorithm for Estimating Latent States of High-Speed Vehicles","authors":"Yoon-Yeong Kim, Hyemi Kim, Wonsung Lee, Han-Lim Choi, Il-Chul Moon","doi":"10.2514/1.I010831","DOIUrl":null,"url":null,"abstract":"Tracking an object under a noisy environment is difficult especially when there exist unknown parameters that affect the object’s behavior. In the case of a high-speed ballistic vehicle, the trajectory of the ballistic vehicle is affected by the change of atmospheric conditions as well as the various parameters of the object itself. To filter these latent factors of the dynamics model, this paper proposes a black-box Expectation-Maximization algorithm to estimate the latent parameters for enhancing the accuracy of the trajectory tracking. The Expectation step calculates the likelihood of the observation by the Extended Kalman Smoothing that reflects the forward-backward probability combination. The Maximization step optimizes the unknown parameters to maximize the likelihood by the Bayesian optimization with Gaussian process. Our simulation experiment results show that the error of tracking position of the ballistic vehicle reduced when there exist much noise in the observations, and some important parameters are unknown.","PeriodicalId":129520,"journal":{"name":"2018 18th International Conference on Control, Automation and Systems (ICCAS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tracking an object under a noisy environment is difficult especially when there exist unknown parameters that affect the object’s behavior. In the case of a high-speed ballistic vehicle, the trajectory of the ballistic vehicle is affected by the change of atmospheric conditions as well as the various parameters of the object itself. To filter these latent factors of the dynamics model, this paper proposes a black-box Expectation-Maximization algorithm to estimate the latent parameters for enhancing the accuracy of the trajectory tracking. The Expectation step calculates the likelihood of the observation by the Extended Kalman Smoothing that reflects the forward-backward probability combination. The Maximization step optimizes the unknown parameters to maximize the likelihood by the Bayesian optimization with Gaussian process. Our simulation experiment results show that the error of tracking position of the ballistic vehicle reduced when there exist much noise in the observations, and some important parameters are unknown.
高速车辆潜在状态估计的黑箱期望最大化算法
在噪声环境下跟踪目标是非常困难的,特别是当存在影响目标行为的未知参数时。在高速弹道飞行器的情况下,弹道飞行器的轨迹不仅受到大气条件变化的影响,还受到物体本身各种参数的影响。为了过滤动力学模型的这些潜在因素,本文提出了一种黑箱期望最大化算法来估计潜在参数,以提高轨迹跟踪的精度。期望步骤通过反映前向后概率组合的扩展卡尔曼平滑计算观测值的可能性。Maximization步骤通过高斯过程的贝叶斯优化对未知参数进行优化,使似然最大化。仿真实验结果表明,在观测噪声较大、一些重要参数未知的情况下,弹道飞行器的跟踪位置误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信